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1 Enacting Legitimation Code 
Theory in science education

Margaret A.L. Blackie, Hanelie Adendorff, and 
Marnel Mouton

Introduction

The purpose of science education is not only to produce a new generation of 
scientists but also to offer young people understanding about the vast explan-
atory power that science has to offer to a world faced with complex chal-
lenges. Debates on how to handle existential threats such as global warming 
and diseases like COVID- 19 are good examples of such problems. Osborne 
and Dillon (2008) argue that science education ‘should be to educate stu-
dents both about the major explanations of the material world that science 
offers and about the way science works.’ Moreover, scientific understanding 
and reasoning are desired attributes for the future citizen in many countries 
of the world. Wide- ranging studies have shown that this aspiration will 
require dedicated investments in skilled science educators that continuously 
develop their own knowledge and teaching practice, the development of 
genuinely engaging curricula, as well as assessment protocols and structures 
that will meet the desired outcomes and goals. Currently, we are not achiev-
ing this ideal. Many European countries, for example, have witnessed a 
decline in the number of students who enrol for degrees in science (Osborne 
and Dillon 2008). Moreover, science education continues to represent a 
substantial hurdle for both lecturers and students around the globe. Students 
find science courses difficult to master, and lecturers find science courses 
challenging to teach, although the nature of that challenge varies from sub-
ject to subject (Sithole et al. 2017). Nonetheless, science education has 
tended to focus on the mastery of particular scientific concepts rather than 
on the induction of the student to the knowledge field as a whole.

Many academic scientists are interested in developing and improving their 
own pedagogy but may struggle to find a ‘way into’ engaging with the 
scholarship of teaching and learning (Adendorff 2011). Conducting science 
education research is an even bigger challenge. The stumbling block for 
many academics making this transition is the apparent lack of clarity on the 
links between methods and theoretical frameworks (Adendorff 2011). 
Whilst some educationalists have attributed the lack of impact of their work 
on the practices of many science educators to an arrogant dismissal of edu-
cation as unscientific, this is far too simplistic and one- sided. Differences of 
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terminology, methodology, style and even epistemology can make research 
into science education appear daunting and alien to university- based scien-
tists. Moreover, some approaches in science education research are less than 
convincing with the use of vague terminology, loose logic and minimal 
empirical evidence. There is thus a need for an approach that is clear, explicit, 
evidential and rigorous, to help engage scientists with scholarship that can 
enhance their pedagogic practices and enable science education research. 
This book brings together a rich collection of studies in science education 
that uses a common framework, Legitimation Code Theory, to attend to 
these concerns.

Legitimation Code Theory (LCT) provides a welcome entry point into a 
scholarly approach to science pedagogy, as well as rigorous science education 
research. Moreover, we have found that academic scientists experience LCT 
as more ‘science- like’ and therefore ‘less foreign,’ relative to other education 
research frameworks. LCT offers a suite of tools which can be used for a wide 
range of purposes (which is explained later in this chapter). For example, it 
may be used to analyze conceptual gain, or to evaluate the ways in which 
knowledge and social relations interact in a particular situation or to interro-
gate the aims and purposes of different learning activities in a course. We can 
use the framework to examine from the ways in which scientific concepts are 
taught to the ways we structure science assessments (Rootman- le Grange 
and Blackie 2018, 2020; Steenkamp et al. 2019).

There is already a diversity of ways in which LCT has been enacted for 
evaluating and shaping science pedagogy and curricula, with the framework 
finding application in Biology (Mouton and Archer 2019; Mouton 2020), 
Chemistry (Blackie 2014) and Physics (Georgiou 2016), to name but a few. 
LCT comprises several ‘dimensions’ or sets of concepts, one of which is 
Semantics. The following three examples all make use of Semantics in differ-
ent ways. Conana et al. (2016) analyzed the way in which language and 
concepts were used in an introductory Physics course. These authors showed 
that the lecturer almost exclusively used specialist language, which was trou-
blesome for students to access. LCT holds that knowledge- building for 
epistemological access requires waves of movement between simpler, every-
day language and the more specialist language of the subject (Maton 2009). 
Kelly- Laubscher and Luckett (2016) used Semantics to show that there is a 
vast disparity in complexity between high school and university Biology 
textbooks. This difference may be one of the reasons why students who 
achieved good marks in school struggled with the subject in their first year 
at university. Mouton and Archer (2019) and Mouton (2020) have since 
built on these findings in Biology to develop a pedagogy and learning activ-
ities to mitigate the articulation gap between school and first year in higher 
education. In all of these studies, LCT was used to reveal tacit problems and 
to shape teaching practice to overcome the problems. These are just some 
possibilities among many. LCT offers the possibility of a breadth of explora-
tion at any level – from a single lecture or practical, to an entire degree 
programme.



Enacting Legitimation Code Theory in science education 3

Through the exploration of LCT, two further aspects of education have 
come into view: cumulative knowledge- building (Maton 2009) or extending 
existing ideas and integrative knowledge- building (Maton and Howard 2018) 
or productively bringing together different ideas. Science students often 
struggle to recognize particular scientific concepts in a different context, a key 
outcome of most science programmes. Cumulative knowledge- building is 
essential to ensure that a student will be able to use concepts and language 
beyond the scope of the particular course, such as the capacity to use science 
concepts of acids and bases taught in an introductory Chemistry course in a 
second- year Biochemistry course or in real- world problems pertaining to acid 
rain. Integrative knowledge- building is the integration of different kinds of 
knowledge – this is the foundation for lifelong learning and key to solving 
real- life, complex problems. For example, recognizing that developing new, 
healthier and cheaper or more sustainable food products draws from knowl-
edge in Chemistry, Biochemistry and Microbiology. Similarly, understanding 
the mechanism of infection of a virus such as SARS- CoV- 2, the cause of 
COVID- 19, requires drawing knowledge from different disciplines.

The methodology of LCT also offers a significant advantage to academics 
who have been used to disciplinary STEM- based research. Feedback from 
various workshops on LCT suggests that academic scientists find that the 
integral use of Cartesian planes (described later in this chapter) offers a famil-
iar visual framework which somehow makes LCT feel more ‘science friendly.’ 
The take up of LCT in the science community speaks for itself.1 This emerg-
ing body of work shows how academics across scientific disciplines have used 
LCT in the analysis and shaping of their current teaching practice. To date, 
such efforts have been largely ad hoc. The vast majority of papers have come 
from a relatively small community of science educators who have stumbled 
across LCT and found it very useful, though the rapid growth of this com-
munity in recent years is reaching a critical mass of productivity. It is thus 
timely to gather a collection of these efforts to show something of the range 
of what the use of LCT can achieve within a scientific context.

In this chapter, we introduce the conceptual framework, LCT, to science 
educators. We look at each of the LCT dimensions that are used throughout 
this book – Specialization, Semantics and Autonomy. At the end of this chap-
ter, we present a brief summary of the chapters that reach across the sciences 
and which embrace curriculum design, pedagogic practice and assessment.

Legitimation Code Theory

LCT is a realist framework, developed by Karl Maton (2014), which builds 
on the work of Basil Bernstein and Pierre Bourdieu, among others. It offers 
a multi- dimensional approach for exploring what it means to know and how 
one comes to know in different disciplines or knowledge practices (Winberg 
et al. 2020). The sociologists Bernstein and Bourdieu both witnessed the 
wave of massification of higher education, which shifted the demographic of 
the student body from a small, privileged élite to a large diverse group 
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including more social classes. It soon became apparent that this greater access 
did not translate to success for all since not all students had the cultural and 
social capital required to engage meaningfully in higher education. This has 
been highlighted by Morrow’s (2009) work on ‘epistemological access’ to the 
required knowledge. The work of Bernstein (2000), Bourdieu (1988) and 
Morrow (2009) aim to expose some of the impediments to entry into aca-
demia. LCT has a similar social justice agenda – making the ‘rules of the game’ 
explicit to all participants, potentially affording access to those who have not 
been culturally conditioned to see the dynamics in play (Maton 2014).

One of the ways in which LCT does this is by addressing the issue of 
knowledge- blindness, where knowledge is reduced to knowing (mental pro-
cesses of understanding) whilst losing sight of the organizing principles at 
play in different knowledge practices (Maton, 2014: 3). With its focus on 
revealing these underlying logics, LCT allows us to show the ways in which 
coming to ‘know’ differ across different knowledge practices. LCT’s set of 
tools can be enacted to explore knowledge, i.e. what counts as a legitimate 
claim, who is allowed to make such a claim, and how meaning is made by 
making explicit that which is often hidden or tacit and taken for granted. Its 
various concepts and dimensions offer a means to reveal different aspects of 
these ‘rules of the game’ in diverse practices.

Dimensions of LCT

Three of LCT’s dimensions are well developed and in fairly wide usage: 
Specialization, Semantics and Autonomy. Specialization and Semantics are 
both thoroughly described in Knowledge and Knowers (Maton 2014) and in 
Knowledge- Building (Maton et al. 2016). Autonomy was not fully devel-
oped at that time, but an extensive overview of this dimension was presented 
in a paper written by Maton and Howard (2018). As mentioned earlier, 
these three dimensions allow exploration of different aspects of knowledge 
practices. Specialization is focused on how knowledge and knowers are legit-
imated in different knowledge practices. Semantics reveals how meaning is 
made. Autonomy explores the origin and purposes of various constituents of 
knowledge practices. Each LCT dimension is conceived as a combination of 
two organizing principles. These two organizing principles are independent 
of one another, each with the ability to vary from weaker to stronger, and 
can thus be plotted on a Cartesian plane with each of the principles repre-
sented by one of the axes. Practices can valorize one, both or neither of the 
organizing principles, leading to four overarching modalities for each dimen-
sion, which are called ‘codes.’

Specialization

Specialization focuses on the basis for legitimacy in different practices, i.e. 
who can make a legitimate knowledge claim, as well as what would consti-
tute a legitimate knowledge claim. This starts from the perspective that all 
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knowledge claims are about something and made by someone. The organiz-
ing principles in the case of Specialization are epistemic relations (ER), 
between the knowledge practice and its objects, and social relations (SR), 
between the practice and its subjects. Fields with relatively strong epistemic 
relations (ER+) place emphasis on knowledge, skills and procedures whilst 
fields with relatively strong social relations (SR+) valorize dispositions, values 
and attributes of knowers (Maton 2014). The two relations can be plotted as 
the specialization plane, with four principle modalities or specialization codes 
as shown in Figure 1.1 (Maton et al. 2016). Knowledge practices are always 
underpinned by epistemic relations and social relations, but it is the degree 
to which each organizing principle is emphasized that determines the basis 
of achievement in a particular practice. As stated above, practices can empha-
size one, both or neither of these relations as a basis for legitimacy whilst 
both relations can vary from stronger to weaker, allowing an infinite number 
of strengths or positions on the specialization plane (Figure 1.1).

The principal modalities or specialization codes are (Figure 1.1):

 • knowledge codes (ER+, SR−) arise when we have stronger epistemic rela-
tions (ER+) coupled with weaker social relations (SR−), i.e. where prac-
tices emphasize the possession of specialized skills, knowledge or 
procedures as the basis for success whilst downplaying the attributes of the 
actor making the claim. In this code, what one knows is important, and 
one’s dispositions may be gently overlooked. Legitimate participation in 
the natural sciences is often dominated by different variations of this code.

 • élite codes (ER+, SR+) arise when stronger epistemic relations (ER+) are 
coupled with stronger social relations (SR+), i.e. where practices emphasize 
the possession of both specialized skills, knowledge or procedures and 
attributes of the actor making the claim. In this code, both what one knows 
and who you are provide the basis for legitimacy. Fields that are both tech-
nically demanding and require some kind of individual expression, such as 
professional classical music performance, may be dominated by this code.

 • knower codes (ER−, SR+) arise when weaker epistemic relations (ER−) 
are coupled with stronger social relations (SR+), i.e. where practices 
emphasize the attributes of the actor making the claim and downplay the 
possession of specialized skills, knowledge or procedures as the basis for 
legitimacy. In this code, who one is, is important, not what one knows. 
Many practices in the humanities are dominated by this code, through 
notions of a cultivated gaze.

 • relativist codes (ER−, SR−) arise when legitimacy is determined by nei-
ther one’s specialist knowledge nor one’s personal attributes. This is a 
sort of ‘anything goes,’ such as when brainstorming without limits on 
what is a permissible idea to add.

Knowledge of the dominant code in a practice can help us unpack the rules 
for legitimacy, or the basis for achievement, in that practice. Besides the 
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ability to change or shift over time, codes can also match, i.e. when two sets 
of practices use the same basis for success, or codes can clash. Code clashes 
occur when people or practices are characterized by different codes. Scientists 
who undertake education research for the first time often experience such a 
code clash when introduced to literature in teaching and learning that uses a 
knower code as its basis for claims. This might also be one reason why LCT, 
with its stronger epistemic relations, has found traction in many science 
environments.

Each of these organizing principles – epistemic relations and social rela-
tions – can be explored in more detail. ‘Epistemic relations’ can be bro-
ken down into ‘what practices relate to and how they so relate’ (Maton 
2014: 174). These are ontic relations (OR) between knowledge practices 
and their objects of study, and discursive relations (DR) between knowl-
edge practices and other knowledge practices (such as between different 
theories and methods). These relations can be plotted on the epistemic 
plane (see Figure 1.2), allowing us to distinguish four principal modalities 
or insights:

 • doctrinal insight (OR−, DR+): what counts as legitimate objects of study 
is not tightly controlled (weaker ontic relations), but there are strong 
boundaries between what qualifies as a legitimate approach and what 
does not (stronger discursive relations). Legitimacy is thus the result of 
using a specialized approach.

 • situational insight (OR+, DR−): strongly bounds and controls what can 
be legitimately studied (stronger ontic relations) but weakly bounds 
how this can be done (weaker discursive relations). What is studied is 

epistemic relations

social
relations

knowledge élite

relativist knower

ER+

ER–

SR– SR+

Figure 1.1 The specialization plane (Maton 2014: 30).
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significant for legitimacy, but there is relative flexibility in terms of 
approaches used.

 • purist insight (OR+, DR+): both legitimate objects of study and legiti-
mate approaches are strongly bound and thus significant.

 • knower/no insight (OR−, DR−): both the objects of study and the legit-
imate approaches are weakly bound. Thus, neither the object of study 
nor the method of study is used as a basis for legitimacy. This may be 
knower insight when these weaker epistemic relations are paired with 
stronger social relations (a knower code or ER−, SR+), or it may be no 
insight when paired with weaker social relations (a relativist code or 
ER−, SR−).

The epistemic plane is useful for distinguishing between the kinds of knowl-
edge that are being developed (Maton 2014). One of the major complaints 
of employers of science graduates is that they are unable to apply their 
knowledge. Among many possible applications, the epistemic plane can be 
used to explain why this might be. Lecturers may focus on the use of particu-
lar methods but fail to clearly show the limits of their application. This means 
that students may be able to pass courses and apply specific approved 
methods (DR+) to solve problems carefully chosen by the examiners (could 
be OR− or OR+). However, on entering employment, the new graduate is 
likely to be faced with complex or multifaceted problems and must then 
decide which methods can be legitimately applied. If the limits of 
application, i.e. variation in strength of OR, was not a major consideration in 
the course, the new graduate may struggle.

ontic relations

discursive
relations

OR+

OR–

DR– DR+

situational purist

knower/no doctrinal

Figure 1.2 The epistemic plane (Maton 2014: 177).
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Turning to ‘social relations,’ the social plane (Figure 1.3) can be used to 
explore in greater depth different kinds of relations to knowers. These con-
cepts are most applicable to knower- code practices (ER–, SR+) or élite- code 
practices (ER+, SR+), i.e. where social relations are relatively strong (Maton 
2014). The social plane does not feature in this book. However, it is described 
here for the purposes of a more rounded introduction to the suite of tools 
most widely enacted at present. In addition, it affords the possibility of mak-
ing the practices of knower- code fields (such as many parts of education 
research) more understandable to scientists. It may also be useful in science 
disciplines with a strong professional development orientation where social 
relations are also explicitly valued.

The social plane (Figure 1.3) maps the distinction between legitimation of 
practice on the basis of emphasis on who one is (subjective relations) and ways 
of knowing through interactions with significant others (interactional rela-
tions). Both can take many forms; for example, subjective relations may high-
light social class, sex, gender, race, ethnicity, sexuality, religion, etc., and 
interactional relations may highlight prolonged immersion in a canon of 
great works, spending time within a culture and so on. Both relations may 
differ in how emphasized they are as the basis of legitimacy. As before, plot-
ting these relations as a plane result in four modalities or gazes:

 • social gazes (SubR+, IR−) emphasize legitimacy as a legitimate knower 
based on who one is (stronger subjective relations) and downplay the 
significance of specific ways of knowing (weaker interactional relations). 
An example is offered by standpoint theories that allow only those with 
a particular identity, such as being LGBTQIA+, to claim legitimacy.

subjective relations

interactional
relations

social born

trained/blank cultivated

SubR+

SubR–

IR– IR+

Figure 1.3 The social plane (Maton 2014: 186).
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 • cultivated gazes (SubR−, IR+) emphasize legitimacy not on the basis of 
one’s identity (weaker subjective relations) but rather on the basis of how 
one interactionally comes to be a knower (stronger interactional rela-
tions). These often involve acquiring a ‘feel’ for practices through, for 
example, extended participation in ‘communities of practice,’ sustained 
exposure to exemplary models, such as great works of art, and prolonged 
apprenticeship under an acknowledged master.

 • born gazes (SubR+, IR+) emphasize both legitimate kinds of knowers 
(stronger subjective relations) and legitimate ways of knowing (stronger 
interactional relations), such as claims to legitimacy based on both mem-
bership of a social category and experiences with significant others (e.g. 
standpoint theory that additionally requires mentoring by already- 
liberated knowers in consciousness- raising groups).

 • trained/blank gazes (SubR−, IR−) emphasize neither kinds of knowers 
nor ways of knowing as the basis of legitimacy. As part of specialization 
codes, they emphasize either stronger epistemic relations (trained gaze) 
or nothing at all (blank gaze).

Semantics

The Semantics dimension of LCT considers the nature of meanings in terms 
of context and complexity. The organizing principles are semantic gravity 
and semantic density (Maton 2014).

Semantic gravity (SG) refers to the degree to which meaning relates to its 
context (Maton 2013, 2014; Maton et al. 2016). Semantic gravity can 
be stronger and weaker along a continuum of strengths. When the 
meaning is strongly tied to a context, semantic gravity is stronger 
(SG+); when meaning is weakly tied to a context, semantic gravity is 
weaker (SG−). In practice, semantic gravity can be strengthened by 
moving from more decontextualized meanings to more concrete, con-
textualized meanings and weakened by doing the opposite. In science 
teaching, for example, real- world applications of theoretical concepts 
can be employed to strengthen semantic gravity, and then returning to 
the theoretical concepts would weaken semantic gravity.

Semantic density (SD) refers to the complexity of meaning (Maton 2013, 
2014; Maton et al. 2016). Semantic density can also be stronger or 
weaker along a continuum of strengths. Stronger semantic density (SD+) 
indicates more complex meanings; weaker semantic density (SD−) indi-
cates less complex meanings. In practice, semantic density can be dynam-
ized by moving (strengthening and weakening) between more complex, 
condensed meanings and simpler meanings. In science teaching for exam-
ple, when a scientific term or concept is introduced or used, the meaning 
is often relatively complex or stronger semantic density; when the lecturer 
then unpacks and explains these meanings using simpler words and terms, 
they are expressing weaker semantic density; then they return to the con-
cept; they are moving back to stronger semantic density.
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The strengths of the two organizing principles, semantic gravity and 
semantic density, may vary independently. These are mapped on the semantic 
plane (SG±, SD±): semantic gravity is the y- axis and semantic density is the 
x- axis, as shown in Figure 1.4 (Maton et al. 2016). We can identify four 
principal semantic codes (Maton 2013, 2014; Maton et al. 2016):

 • rhizomatic codes (SG−, SD+), where meaning and the ‘basis of achieve-
ment’ is relatively context- independent (weaker semantic gravity) and 
complex and condensed (stronger semantic density). Examples in sci-
ence education may include complex theoretical terms or abstract con-
cepts, often expressed in specialist scientific language or symbols, where 
no external context is given or available.

 • worldly codes (SG+, SD+), where legitimacy is based on meanings that are 
relatively context- dependent and more concrete (stronger semantic grav-
ity) but complex and condensed (stronger semantic density). An example 
in science teaching may include teaching or using complex scientific 
terms or concepts taught against a backdrop of a real- world context.

 • prosaic codes (SG+, SD−), where legitimacy represents meanings that are 
relatively context- dependent (stronger semantic gravity) and simpler 
(weaker semantic density). Examples of these codes in science teaching 
may include using simpler meaning (possibly everyday concepts or basic 
scientific terms) that apply to real- world contexts – maybe as a way to 
explain more complex content later in a lecture.

 • rarefied codes (SG−, SD−), where legitimacy is based on meanings that 
are more context- independent (weaker semantic gravity) but relatively 
simple (weaker semantic density). Here, examples in science teaching 
may include the use of simpler theoretical terms, but without the 

semantic gravity

semantic
density

rarefied rhizomatic

prosaic worldly

SG–

SG+

SD– SD+

Figure 1.4 The semantic plane (Maton 2014: 131).
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background of context (decontextualized), possibly purely theoretical, 
but relatively simpler meaning.

Practice (such as classroom practice) can and should ideally display code 
shifts on the semantic plane – movements between decontextualized and 
more contextualized meanings, as well as between simpler and more com-
plex meanings. This shifting between semantic codes is known as semantic 
waves (Maton 2013, 2014). For example, Mouton and Archer (2019) have 
shown how pedagogy in Biology should enact semantic waves to facilitate 
cumulative learning and Mouton (2020) further showed how project- based 
learning can be employed to reach the same goal. Similarly, Blackie (2014) 
argues that many lecturers (organic Chemistry in her case) use terms and 
simply presume that students understand the broader scope of what is being 
said. Instead, lecturers should consciously and intentionally move between 
stronger and weaker semantic gravity, as well as between stronger and weaker 
semantic density, to enact semantic waves in their teaching of such theoreti-
cal/abstract discipline content.

Extensive research of classroom practices showed that the use of semantic 
waves enables cumulative knowledge- building (Maton 2013; Clarence 2016; 
Kirk 2017), a key aspect in ‘connecting the dots’ of knowledge. Clarence 
(2016) showed that Semantics can be used by lecturers to understand how 
to facilitate cumulative knowledge- building using semantic waves. In the 
field of academic writing, Kirk (2017) demonstrated how students can be 
taught to use the concepts of semantic gravity and semantic gravity waves to 
understand what is valued and required in their writing assignments. 
Matruglio et al. (2013) used the interesting approach of temporality in class-
room practice to enact semantic waves.

The extent to which students are able to enact semantic waves in discourse 
has been shown to play a role in achievement (Maton 2013). Research 
revealed that high- achieving student essays are characterized by a wider 
semantic range than that of low achieving essays, which often display so- 
called semantic flatlines – little or no movement between simpler, contextu-
alized and more complex, decontextualized meanings (Kirk 2017). However, 
this depends on the questions asked or the aims of a project. Georgiou’s 
studies (2016) in Physics education showed that students lacking experience 
in science (more novice learners) expressed a very limited range of semantic 
gravity in explanations, often remaining at the very concrete levels of stronger 
semantic gravity. Students with a stronger science background seem to 
understand that a wider semantic gravity range is needed to explain and 
answer certain questions. They also found that more proficient students 
understood which questions required a certain range for semantic gravity. 
However, less proficient students were found to often draw on explanations 
too weak in semantic gravity, thus reaching up the semantic gravity scale 
even when it is not necessary, revealing their lack of discernment.

Using the Semantics dimension of LCT to enact semantic waves in science 
education has vast potential to improve pedagogy and promote students’ 
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learning, understanding and achievement. In science lecturing, for example, 
lecturers may reach back to discipline content from school but also stretch 
toward the new complex discipline content and move between abstract the-
ory and applications in recurrent cycles. In this type of classroom practice, 
knowledge is continuously transformed between relatively concrete and 
decontextualized meaning, as well as between simpler and more complex 
condensed meaning, leading to the ability to build on previous knowledge 
and the transfer thereof into new contexts – crucial in science education.

Scientific language is generally complex and therefore represents stronger 
semantic density. However, ‘complexity’ is a relative term and is often used 
simply to refer to the cognitive demand of an assessment or assignment. In 
contrast, ‘semantic density’ affords greater specificity, conceptualizing com-
plexity in terms of the condensation of meaning within practices, where con-
densation refers to adding meaning to a term or practice. Maton and Doran 
(2017a, 2017b) distinguished between forms of semantic density and 
explored epistemic–semantic density (ESD) which deals with epistemological 
condensation of formal disciplinary definitions and descriptions. They offer 
different tools for analyzing the ESD of language at the level of individual 
words, word- grouping, clausing and sequencing. Epistemic–semantic den-
sity further explores the relationality of meanings. Thus, the greater the 
number of relations to other meanings of terms or concepts, referred to as a 
constellation of meanings, the stronger the epistemic–semantic density 
(Maton 2013; Maton and Doran 2017b). For example, a scientific term such 
as ‘protein synthesis’ includes actions and processes with multiple distinct 
parts, each with its technical meaning, and will therefore have stronger ESD.

Autonomy

The Autonomy dimension of LCT explores the degree of insulation of prac-
tices — how insulated are the parts, and how insulated are the ways that they 
are related together (Maton and Howard, 2018). The two organizing prin-
ciples are positional autonomy (PA) and relational autonomy (RA). Autonomy 
is based on the assumption that any set of practices comprises both constitu-
ents (the things in the practice, i.e. concepts, ideas, artefacts, actors) and 
relationships among those constituents (e.g. procedures, conventions, aims).

The degree to which a constituent in a particular context is insulated from 
constituents in other contexts is conceptualized as positional autonomy – the 
greater the degree of insulation, the stronger the positional autonomy 
(Maton and Howard, 2018). In education, this is often used to distinguish 
between what is seen as part of, or ‘inside,’ a specific knowledge practice and 
what is not. Those things that are taken to be ‘inside’ a practice are defined 
as having stronger positional autonomy (PA+), and those considered to be 
‘outside‘ are defined as having weaker positional autonomy (PA−). For 
example, it can be used to analyze whether ideas are coming from within a 
specific topic of science (PA++), wider scientific knowledge (PA+), other 
academic knowledge (PA–) or everyday understandings (PA– –).
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The degree to which the principles governing the relations among constit-
uents are bound by the field is conceptualized as relational autonomy (Maton 
and Howard, 2018). In education, this is generally taken as the purpose of 
an activity. Purposes that are taken as a legitimate part of or ‘inside’ a specific 
practice are defined as having stronger relational autonomy (RA+) than 
those considered ‘outside.’ For example, it can be used to analyze whether 
the ideas being taught in a science classroom are being turned to the purpose 
of teaching science (RA+) or towards another purpose, such as behavioural 
management or engagement (RA–).

Mapping positional autonomy and relational autonomy on the autonomy 
plane generates four principal autonomy codes (Figure 1.5):

 • sovereign codes (PA+, RA+) result from strongly insulated positions and 
autonomous principles – PA and RA are both relatively stronger. Such 
practices would use, for example, ‘inside’ concepts to teach or research 
‘inside’ problems, such as using the concept of equilibria in Chemistry 
to determine the pH of a weak acid in a Chemistry experiment.

 • introjected codes (PA−, RA+) result when weakly insulated constituents 
are used for strongly bounded purposes – i.e. when things from ‘outside’ 
are used for ‘inside’ purposes, such as using calculus (from Mathematics) 
to solve problems in Physics.

 • projected codes (PA+, RA−) result when constituents are strongly insu-
lated, but the principles or ways in which they relate are heteronomous. 
Thus, what is valued arises from within the context, but it is used for 
other purposes, or what is ‘inside’ is used for ‘outside’ purposes; for 
example, when Physiology concepts are used to evaluate the validity of a 
health benefit claim made by the food industry.

positional autonomy

relational
autonomy

projected sovereign

exotic introjected

PA+

PA–

RA– RA+

Figure 1.5 The autonomy plane (Maton and Howard 2018: 6).
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 • exotic codes (PA−, RA−) arise when there are weakly insulated positions 
and heteronomous principles. For example, knowledge from a different 
context is used to achieve an end that is not related to the subject in 
hand, such as telling a joke to get the class’s attention.

Autonomy codes have the capacity to be enacted in real- world practices, 
such as teaching practice. It has been shown that there should be a rationale 
behind the materials or practices that are selected, repurposed and connected 
(Maton & Howard 2018, 2020). Purposeful shifts on the autonomy plane 
lead to so- called autonomy tours that engage and cohesively integrate differ-
ent knowledge practices or content. In contrast, poor instructional design 
creates pathways around the plane that leave different knowledge practices 
or content segmented and disconnected (Maton & Howard 2018, 2020). 
Thus, one can use autonomy codes to design how to incorporate different 
knowledge practices or content, such as real- world content from other fields 
into science classroom pedagogy.

The layout of this volume

Given that the primary intended audience for this volume is academics who 
teach within a specific scientific discipline, we decided that organization 
according to discipline would be most helpful. Thus, we included five cate-
gories – academic support in science, physical sciences, biological sciences, 
mathematical sciences and science education research. If you are new to 
LCT, it may help to start with the section associated with your specialty first. 
That way you will be familiar with the knowledge content of the subject 
which will make the power of the LCT analysis more visible. This approach 
may also lower the threshold to becoming familiar with the LCT dimen-
sions. However, once you are familiar with those chapters, we strongly rec-
ommend that you venture out of your comfort zone into different subject 
areas. This will both strengthen your range of understanding of the problems 
encountered in science education and will improve your understanding of 
LCT. At the end of the volume, we have included a ‘how to navigate’ chapter 
(Chapter 12) for those who are just dipping their toes into education 
research. We hope this chapter will help you to lower the activation energy 
threshold into getting going with doing your own research.

Part I of the book is potentially useful to all readers as the focus is on 
academic support in science (Chapter 2). The study explores the role a 
reflective learning portfolio in a science access course plays in enabling stu-
dents to become active, self- directed and independent learners. The reflec-
tive learning portfolio interventions focus on explicitly guiding and modelling 
appropriate learning practices and critical reflection about learning. Karen 
Ellery uses LCT’s Autonomy dimension to analyze the reflective learning 
portfolio interventions and students’ responses to them.

Part II of the book focuses on the physical sciences. In Chapter 3, Christine 
M. Steenkamp and Ilse Rootman- le Grange focus on assessments in an 
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introductory Physics course at Stellenbosch University in South Africa. The 
authors describe a detailed analysis of the Physics exam papers using semantic 
density. Their focus was on the kinds of representation i.e., graphs, diagrams, 
equations, etc., and the complexity of language used in these exam papers. 
Results revealed that some kinds of representations and some types of ques-
tions have been unconsciously omitted from their assessments.

In Chapter 4, Zhigang Yu, Karl Maton and Yaegan Doran turn their atten-
tion to different kinds of representations found in Chemistry. They carry out 
an in- depth study of a Chemistry textbook to reveal the levels of complexity 
and abstraction in operation in the diagrams. Using epistemic–semantic den-
sity, they develop a new method of analyzing representations in Chemistry 
which can be adapted to other sciences. The main aim of the chapter is to 
show how epistemic–semantic density can be applied to visual representa-
tions. Whilst much attention is given to symbols and nomenclature in 
Chemistry education, the complexity of visual representation is relatively 
rarely the focus of a study. Chemistry educators can tend to presume that a 
diagram automatically makes the content more accessible. By showing the 
variation in the complexity of representations in Chemistry, this chapter 
challenges that assumption.

In Chapter 5 Bruno Ferreira dos Santos, Ademir de Jesus Silva Júnior and 
Eduardo Fleury Mortim focus on high school Chemistry. They looked at the 
language used by the teacher, analyzing the clustering of words and phrases. 
Using recordings of lessons, they show the ways in which different teachers 
use language in the descriptions of chemical concepts. The variation is 
between highly dense technical language and much simpler more accessible 
language. The study defines various levels between these two positions using 
epistemic–semantic density. The study shows that some teachers repeatedly 
move between these two positions, whilst others achieve relatively little 
movement.

In Chapter 6, Lizel Hudson, Penelope Engel- Hills and Chris Winberg 
turn their attention to a Physics course presented as part of a degree in 
Radiation Therapy. Teaching the fundamentals of science to health sciences 
students who are eager to focus on patient care, is a non- trivial challenge. 
This chapter explores why these students may find it difficult to understand 
why they need to study Radiation Physics and why the subject is challenging. 
This chapter suggests ways in which the notion of threshold concepts can be 
used to make the fundamental science more accessible. This chapter also uses 
Specialization to make visible the challenges of teaching a subject with a very 
strong theoretical foundation to a cohort who are primarily interested in 
learning about patient care.

Part III of the book focuses on the biological sciences which here features 
an introductory Biology course, a senior Physiology course and a blended 
course comprising Anatomy and Physiology aimed at health science 
students.

In Chapter 7, Gabi de Bie and Sioux McKenna look at a course entitled 
‘Human Biology’ which has developed from the amalgamation of Anatomy 
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and Physiology courses for health sciences students. They show the ways in 
which integrative knowledge- building was overlooked in curriculum design 
resulting in a segmented course which fails to prepare students adequately 
for more advanced courses which draw on the foundational knowledge pre-
sented in this course. They use Specialization and Semantics in this 
chapter.

Chapter 8 is authored by Marnel Mouton, Ilse Rootman- le Grange and 
Bernhardine Uys. They explore why Biology students find it challenging to 
engage with complex disciplinary text from sources such as textbooks and 
then demonstrate their mastery of the subject matter using appropriate sci-
entific discourse. They draw on LCT’s concept of epistemic–semantic density 
(ESD) to analyze sections of the first- year and school textbooks, as well as 
students’ written discourse from summative assessments. They show the pro-
found variation that exists in the proficiency of the students’ scientific vocab-
ulary and language functions, as well as the discourse of the school and 
first- year Biology textbooks. They consequently argue for science pedagogy 
that would allow students time and opportunities to develop these crucial 
skills. Such practice may enable students to successfully engage with the sub-
ject matter and then communicate their understanding using written 
discourse.

In Chapter 9, M. Faadiel Essop and Hanelie Adendorff focus on using 
Autonomy to analyze a project- based activity in the context of an undergrad-
uate Physiology course. The goal of the activity was to teach students how to 
do science as opposed to teaching them about science. Exploring what is 
introduced and for what purpose, using Autonomy, show the value and dan-
gers involved in these kinds of activities. One can spend a lot of effort on 
marginal activities which in fact may obscure the epistemic content necessary 
within the subject.

Part IV of the book turns to the mathematical sciences featuring a chapter 
on the transition into second- year Mathematics and a chapter applicable at 
all levels of tertiary study focusing on mathematical knowledge.

In Chapter 10, Ingrid Rewitzky focuses on teaching Mathematics guided 
by the epistemic plane. It is one of the more subject- specific chapters in the 
book but serves as a very useful introduction to the power of the epistemic 
plane in making the different kinds of knowledge used in Mathematics visi-
ble in teaching. To those without some tertiary- level Mathematics, it will 
require a bit of digestion, but it will be well worth your time investment. 
This chapter is groundbreaking and will be applicable to engineering disci-
plines as well.

In Chapter 11, Honjiswa Conana, Deon Solomons and Delia Marshall 
look at the transition from first year to second year in Mathematics. At many 
South African institutions, there has been significant investment in improv-
ing the first- year experience, but the transition into the second year of study 
can prove to be a stumbling block. In this chapter, they interrogate the expe-
riences of both students and lecturers of a particular intervention introduced 
to smooth this transition in Mathematics.
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The final chapter in Part V is written by Margaret A.L. Blackie and is 
aimed at helping those new to science education research to get something 
of a foothold in the new terrain. The beginning of the chapter gives a brief 
overview of critical realism. Whilst critical realism is one theoretical frame-
work among many, it is a useful starting point for those entering education 
research from a background in disciplinary research in a STEM field. This 
foundation is then used to situate LCT as realist sociological theory. The 
second part of the chapter gives some pointers on how to begin using LCT 
in the scholarship of teaching and learning.

Overall then, this volume provides an overview of what can be achieved 
using LCT in science education. Represented here are a diversity of science 
fields from high- level Mathematics to service courses in Biology. In addition, 
all the major LCT dimensions which have been developed to date and are 
likely to be applicable to science educators are represented here. Thus, this 
book provides a solid introduction to the use of LCT in science in particular 
and will be useful to educators and researchers across STEM fields more 
generally.

Note
 1 For this growing body of work, see the database of LCT publications at https://

legitimationcodetheory.com/publications/database/.
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