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James G. Greeno
Stanford University and Institute for Research on Learning

Marjorie Gardner
Lawrence Hall of Science, University of California, Berkeley

This book reflects a vision of a field that is in the process of development. We
believe that a revised and advanced field of science education can emerge from
the convergence and synthesis of several current scientific and technological
activities. This book includes some examples of research progress of the kind
that we hope will form the integrated discipline of science education.

The papers in this volume were presented at a conference that was an effort
toward this revision and advancement. At a previous meeting in 1986, members
of the communities of science educators, cognitive scientists, and educational
technologists met to discuss and formulate a research agenda for science educa-
tion. In addition to a report of the group’s conclusions m), the meeting
accomplished a step toward forming an inclusive community of research and
development for science education.

The participants in the 1986 meeting agreed that there is an important agenda
for research in science education and that the communities of science educators,
science-education researchers, cognitive scientists, and technologists bring
important perspectives and capabilities to that scientific activity. They did not
completely agree on every point that should be on the agenda or on the relative
importance of the points, but that is as it should be. The community should not
try to work in a single-minded way, but rather should pursue a collection of
overlapping but nonidentical goals and thereby discover which directions are
most productive. The shared sense of the group, however, was that important
programs of research and development are being pursued, and that some of the
community’s effort should be directed toward bringing these various activities
into closer contact. This led to our decision, along with our colleagues, to hold a
conference in 1988, at which the papers in this volume were presented. We
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X GREENO AND GARDNER

invited individuals working on the social context of science learning, in addition
to technology, cognitive science, and science education researchers.

The conference that this volume presents was, in part, a test of the hypothesis
developed at the 1986 meeting, namely, that there is an important agenda for
research in science education and that the various communities of researchers are
engaged in work that is significant for the development of a new integrated field.
We decided to test this hypothesis directly by bringing together individuals from
the various communities to present their work and encourage discussion among
the participants.

The first condition for developing a new intellectual field is the existence of
research problems that are productive and about which the community can in-
teract meaningfully. We believe that this condition is met, and we present this
book as our evidence. These are not the only examples of work that would be
synthesized in the field of science education; any meeting represents a partial
sample. But the point we wish to make is that significant examples exist, and we
hope that our colleagues agree that these papers definitely establish that.

Another condition for developing this field is that individuals working in its
various subcommunities interact productively about each other’s problems as
well as their own. This is harder to demonstrate in a volume of research papers,
but on the basis of our experience in the two meetings, we are optimistic about
that as well. The discussions were mutually engaging and spirited, and partici-
pants’ comments about the meetings were positive. Many individuals at the
meetings met each other for the first time and apparently were favorably im-
pressed. Most of the final versions of papers that you can read here differ
significantly from the versions that were presented, reflecting comments and
questions that were given by other participants. The shared sense of engagement,
including agreements as well as significant unresolved issues, is reflected in the
summary section that Linn contributed to this book. The development of a
genuine scientific community is a long-term process, of course, but we see the
success of these meetings as a positive sign.

Organization of the Book

The papers in this book are in four sections, reflecting four research traditions
that we feel can come together in a scientific practice of science education.

First, there is a community of science-education researchers whose intellec-
tual homes are in the study of curriculum and teaching of scientific disciplines.
Discipline-based research and development was the main activity of the science-
education field during the important period of curriculum reform in the 1950s and
1960s and continues to play a major role.

A second community of researchers in cognitive science studies general prin-
ciples of learning, knowing, understanding, and reasoning. Cognitive science is,
itself, a field in the process of development, forming as a convergence of parts of
artificial intelligence, cognitive psychology, linguistics, philosophy, and other
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disciplines. The research in this developing field differs from earlier research,
especially in psychology, in a way that is important for science education. Mod-
ern cognitive science attends to the content of information that people learn,
know, understand, and reason with. Earlier research on cognition was abstract
and content-free; however, in cognitive science beginning in the late 1950s,
simulation models of cognitive structures and processes include hypotheses
about the specific information structures that are known and understood and the
specific reasoning operations that are applied to those structures.

Until about 10 years ago, the communities of discipline-based educators and
cognitive scientists had very little in common. Since the late 1970s, however,
there has been an increasing tendency for cognitive scientists to be concerned
with problem solving, knowing, and learning in subject-matter domains, es-
pecially in mathematics and science. And simultaneously, there has been an
increasing tendency for scientific discipline-based researchers to make use of
theoretical and empirical methods developed in cognitive science in their re-
search and development of instruction. Both of these trends are evident in the
papers in the first two sections of this volume. Much work remains before the
science of cognition and discipline-based educational research and development
are well integrated, but there is a strong and growing intellectual basis for that
integration, if the communities of researchers choose to develop it.

The third section of papers is concerned with the social context of learning, a
topic on which a body of interdisciplinary research and development is beginning
to grow. Studies of cognition in everyday settings are shedding interesting new
light on the capabilities of individuals to reason successfully about quantities and
causal relations in the world, and relations between this everyday reasoning and
school learning are just beginning to be examined. Investigations of social orga-
nization of schools, including socially determined attitudes toward schooling and
participation in group activities, benefit strongly from use of concepts and meth-
ods developed in the social sciences. We are hopeful that a convergence of
methods and concepts of social science, cognitive science, and discipline-based
educational study can develop productively to broaden the scientific base of
science education.

The final section of this book presents discussions of educational technology
in science and mathematics education. Development of advanced technology for
education has had somewhat disconnected components, with some efforts related
primarily to discipline-based concerns, some to cognitive studies, a few to social
concerns, and several to general concerns of artificial intelligence. The develop-
ment of complex technological systems can serve as a vehicle for further integra-
tion of these various intellectual strands as papers in this volume indicate.

The ldea of a Scientific Practice

The title we chose for this volume is a coined term, and it may bear a brief
discussion. As we envision the developing field of science education, it would
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become an integrated disciplinary activity including development of resources
and materials for science education as well as development of ideas about learn-
ing, knowing, and reasoning in science. The field would also be engaged in
continuing evaluation, refinement, and restructuring of these resources and
ideas. We believe that the model of basic research by a group of scientists, with
results that inform practice by a group of educators, is misconceived. The search
for knowledge and understanding and the development of educational resources
must be concurrent concerns and interactive activities. The alternative vision,
which we prefer, has inquiry coupled with development of resources so that
development is guided by and informs the growth of scientific principles and
concepts, and scientific inquiry addresses questions that are important in prac-
tice. Such a melding of inquiry and practice might well be called either a
practical science or a scientific practice of science education. By either name, we
hope that these papers contribute to its development; we’ll hope and work for its
continued progress.
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VIEW FROM
THE DISCIPLINES

Marjorie Gardner
Elizabeth Stage
University of California, Berkeley

Whether from the natural or from the synthetic world, science is a whole fabric, a
beautifully interwoven tapestry. Humans split it into disciplines for study pur-
poses. We compartmentalize in order to handle its many subtle complexities, yet
we yearn to integrate as evidenced by so many efforts toward interdisciplinary
science and mathematics.

For the opening session of the Research Conference, active researchers from
each of the four traditional areas of science instruction-—biology, chemistry,
mathematics, and physics—were asked to summarize recent research results,
current trends, and recommendations for important research projects for the
future. The purpose was to set the framework for the more interdisciplinary
sections to follow. James Stewart from the University of Wisconsin at Madison
reports on biology; Dudley Herron from Purdue University reports on chemistry;
Jack Lochhead from the University of Massachusetts at Amherst reports on
mathematics; and Lillian McDermott from the University of Washington reports
on physics. Their chapters and reference lists provide the reader with a useful
summary, a wealth of ideas and sources.

McDermott notes that there has been more research on learning and teaching
of physics than in any other science discipline. She discusses physics educational
research from three perspectives, that of the cognitive psychologist, the physics
instructor, and the science educator. Major attention is then given to research
efforts directed toward elucidating students’ understanding of physics concepts,
scientific representations, and the reasoning required for the development and
interpretation of both concepts and representations. Questions for future studies
are identified for each of the three areas she discusses.

Herron takes the constructivist point of view as he reviews recent research in
chemical education and looks to the future. Citing research done in the United
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States and internationally, he critiques research efforts related to problem solving
and conceptual understanding. In surveying research in these two major areas,
Herron explores misconceptions, experts versus novices, and representations.
The chapter concludes with a section that looks to the future by summarizing our
current knowledge and identifying research that is needed.

Stewart begins by noting that the biological sciences are the most commonly
taught sciences at all levels as well as the most rapidly changing due to the
current biological “revolution.” The first half of the chapter is concerned with
the current state of biological sciences educational research; the second part deals
with the future and identifies some of the important research that needs to be
done. Stewart notes that much of the research to date has been of the correlation
studies type as he surveys results of these studies at the elementary, secondary,
and university levels. More sophisticated studies concerned with genetics and
evolution are then reviewed. Studies of the uses of advanced technology includ-
ing the computer are surveyed. In looking to the future, he calls for a research
consortium in biological science education. The research for such a consortium
might include continuation of descriptive research studies, problem-solving re-
search, and research related to the findings of cognitive scientists.

Lochhead describes the recent, rapid, almost explosive advancements in the
mathematical sciences as well as the heavy demands on mathematics education
for advances in research. He identifies needed changes throughout the chapter
and calls for flexibility, and the capacity to respond to rapid change. He also
examines some of the predictable changes in terms of the curriculum and instruc-
tional materials, modes of instruction and student learning strategies (e.g., prob-
lem solving, metacognition). The role and use of calculators and computers are
explored in terms of current research. Lochhead turns near the end of the chapter
specifically to recommended areas for future research.

As the “View from the Disciplines” was unveiled, the current somewhat
fragmentary nature of research became more apparent and elevated awareness of
the need for longitudinal studies and team efforts. Three common threads are
identifiable in the four chapters: attention to problem solving, the constructivist
view of how students learn, and the role of technology in instruction. Little
cross-disciplinary work is being done. Researchers identify themselves as mathe-
maticians, chemists, physicists, biologists or geologists when doing educational
research. All four authors recognize that students construct knowledge for them-
selves and that their knowledge of rules, formulas, and algorithms is virtually
useless unless they can apply what they’ve learned to novel situations. In the
three science papers, there’s further acknowledgment of the importance of under-
standing the origin of student misconceptions. The need for interdisciplinary
collaborative effort and/or perhaps more importantly for Research Centers where
resources can be garnered for in-depth and longitudinal studies become evident.

“View from the Disciplines” serves as a backdrop for the more interdisciplin-
ary areas of Instructional Design, Science Education in the Social Context, and
the Impact of Technology.



A View From Physics

Lillian C. McDermott
University of Washington

INTRODUCTION

There has been more research on the learning and teaching of physics than on any
other scientific discipline. Until recently, most investigations have focused on
mechanics, particularly on kinematics and on the relation between force and
motionH The field of inquiry is now considerably broader and includes several
other content areas such as heat, electricity, and optics.

Physics has been chosen as a domain for investigation by cognitive psychol-
ogists, science educators, and physicists. These groups share some of the same
goals, but their primary motivation for doing research is often different. As a
consequence, they often do not ask the same questions and even when they do,
they may interpret the same answers in dlfferent ways. The broad range in
perspective is illustrated by the diagram i 1 In actual practice, differences
among the groups are not as sharply defmed as they appear in the diagram.

The nature of a paper on the status and future of research in physics education
is likely to be strongly influenced by the background and orientation of the
author. The point of view taken here is that of a physics instructor whose primary
motivation for research is to understand better what students find difficult about
physics and to use this information to help make instruction more effective The

OFor an overview of research on conceptual understanding in mechanics, se

BFor examples of the author’s approach to research in phy51cs education, see dg
m [iss)), ) [¥icDermott Rosenquist &
. For

examples of the application of this research to

curnculum development se iggsenguxgt McDermott (1987].
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PERSPECTIVES ON RESEARCH IN PHYSICS EDUCATION

Cognitive Physics Science
Psychologist Instructor Educator
A
1 I Focus on General
Focus on | FocusonPhysics | Instructional
Human Cognition | Subject Matter | Strategies
i 1

Specific
Difficulties

Specific
Instructional
Strategies

- —u

Theories of Cognilion or Instruction

Ecal Physics has been chosen as a domain for investigation by
cognitive psychologists, science educators, and physicists.

direction and methods for research are derived from an interest in physics for its
own sake and an interest in teaching that particular subject. The emphasis in the
research is to identify specific difficulties and to develop instructional strategies
to address these difficulties. This focus is not meant to imply a lack of interest on
the part of the author in the general theoretical and instructional issues that
concern the cognitive psychologist and science educator; rather, the approach
reflects a pragmatic attitude toward instruction that is common among physicists
who teach the subject. The empirical emphasis is also a consequence of the belief
that the most effective way to improve instruction is by first concentrating on
specific instances and generalizing only at later stages.

Some physicists hold a contrasting point of view— As shown in the diagram in

BFor a discussion by a physicist with a more theoretical perspective, sem,m &l]);
Hestenes (1987).
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, this perspective is closer to that of cognitive psychologists. Physics has
proved to be an appealing domain for studies that focus on problem-solving. The
interest that drives the research of these investigations is often less on specific
subject matter and more on underlying thought processes. An important goal for
cognitive psychologists is the development of theoretical models of human cog-
nition that can be used as a basis for planning instruction™

Still another approach toward research in physics education characterizes the
work of science educators. The title, as used in this paper, does not refer to the
science instructor who is a subject matter specialist, but is reserved for those who
are directly concerned with the education of teachers or with curriculum and
instruction in the schools. As indicated i , science educators are usually
more broadly interested in teaching science in general than physics in particular.
Although physics may provide the context, the focus for research is often on the
development of instructional strategies and theories of instruction that extend
beyond the teaching of physics'.3

The particular view that is presented in this paper has evolved over several
years and has been influenced by the experience of the Physics Education Group
at the University of Washington. The group, which is an integral part of the
Physics Department, is actively involved in teaching physics to students with a
wide variety of preparation. The instructional environment provides a setting for
conducting research and curriculum development from a strong disciplinary per-
spective. We have found it useful to organize these activities into categories that
correspond to various aspects of student understanding in physics. Our investiga-
tions are directed toward elucidating the following aspects of student understand-
ing: the concepts of physics, scientific representations (e.g., diagrams, graphs,
equations), and the reasoning required for the development and interpretation of
both concepts and representations. We make use of problems primarily to gain
insight into conceptual and reasoning difficulties rather than to examine problem-
solving capability as an end in itself. There is a major emphasis in our research
on the ability of students to make connections among concepts, representations,
and real world phenomena.

In this paper, the organizational structure for discussion of research will be
provided by a loose classification scheme consisting of four categories: (a) con-
cepts, (b) representations, (c¢) reasoning, and (d) problem solving. These are not
mutually exclusive. An investigation may fit equally well into more than one
category. The choice has been determined by the aspect of research that a particu-
lar study is used to illustrate. To call attention to recent work outside of mechan-
ics, the illustrations have been drawn from other content areas whenever
possible.

OFor a discussion by a cognitive psychologist about implications from research for physics
intructon, ed Larkin (1980
BFor a discussion by a science educator about applications of research results to physics instruc-

tion, see{ Gilbert & Watts (1983}; ne. Gunstone, & Klopfer




CONCEPTS

The discussion in this section focuses on a line of research in which qualitative
interpretation of a concept is required. The task presented to the students may
involve real objects and actual events or deal with a hypothetical situation. Most
investigations in which actual equipment is used involve one-on-one interviews
or small group activities in which there is dialogue between the investigator and
students. Sometimes a laboratory demonstration provides the basis for written
questions simultaneously administered to a large group. In other investigations,
the task is presented only in written form and student response is entirely in
writing.

Criteria for Understanding

The determination of what constitutes adequate conceptual understanding de-
pends on the type of study and on the point of view of the investigator. In
investigations based on actual phenomena that the student observes or can easily
imagine, the emphasis is on the ability of students to use a concept (or set of
concepts) correctly in performing a specified task. The criteria may include some
or all of the following: (a) The ability to apply the concept to the situation
observed and to describe the reasoning used; (b) the ability to recognize circum-
stances under which the concept is or is not applicable; and (c) the ability to
distinguish clearly between the concept under scrutiny and similar but different
concepts that might apply to the same situation. In some investigations, the
emphasis may be on student facility with different ways of representing the
concept (e.g., diagrams, graphs, equations) or with the ability to make connec-
tions among these representations and the real world.

Many studies do not involve actual apparatus. Questions about a physical
situation may be described on paper or on a computer screen. There may or may
not be supplementary interviews. In cases in which the student responds only in
writing or by typing on a keyboard, it is much more difficult and often impossible
to extract the amount of conceptual detail that the interview situation allows. On
the other hand, mass testing by questionnaire or computer allows the investigator
to estimate the prevalence of a particular response.

Some studies place less emphasis on the ability to apply concepts than on the
ability to relate a set of concepts that may be applicable under certain general
conditions. The students are encouraged to think about the concepts from a
theoretical perspective. For example, there have been a number of studies in
which students are asked to draw “maps” showing relationships among con-
cepts. From the ways in which students group the concepts, indicate a hierarchy,
and show connections, inferences are drawn about the level of conceptual under-
standing. In such cases, the criterion for understanding refers to the accuracy and
level of sophistication that the student demonstrates in drawing the diagram.

6



Misconceptions

Although the methods of research are diverse, some generalities emerge. Stu-
dents have certain incorrect ideas about physics that they have not learned
through formal instruction, or at least that they were not intentionally taught.
Some have resulted from misinterpretation of daily experience; others are of a
different origin. To the degree that these ideas are in conflict with the formal
concepts of physics, the physicist considers them to be *“misconceptions.” The
term misconceptions will be used here although it is recognized that some inves-
tigators would rather refer to alternate conceptions.

It has been shown by a number of studies that students often complete a
physics course with some of the same misconceptions with which they began.
Furthermore, certain errors are characteristic of student responses to certain types
of questions (see footnote 1). These observations have led some investigators to
hypothesize that students bring to the study of physics a strongly held system of
beliefs about how the world operates [McCloskey, 1983). A contrasting point of
view is that students’ knowledge of the world is fragmentary and unstable, with a
tendency to shift according to the context [di Sessa, 1988). There is disagreement
about whether certain observed regularities in response occur because students
have a mental model for cause and effect or for some other reason. For example,
perhaps the similar features among answers are simply elicited by the way in
which the questions are asked [Viennot, 19854, [1985H).

Although there is a difference of opinion about whether or not students have a
consistent system, there is no doubt that there are some common misconceptions
that do not disappear spontaneously as the relevant material is taught. To bring
about conceptual change, it is frequently necessary to make a conscious effort to
help students reject certain ideas and accept others Strike & Posner, 1982). The
way such instruction is designed may be influenced by the inferences made about
how students think.

Constructivist Epistemology

The results from research are consistent with the view that the mind is not a blank
slate upon which an instructor may write correct statements that the student can
learn passively. It is also clear that, whatever their origin, incorrect ideas that are
well entrenched in the student mind may interfere with the ability to learn what is
being taught. These circumstances have led to an interest in constructivist epis-
temology among science educators. Basic to this approach are the beliefs that (a)
Each individual must actively construct his or her own concepts, and (b) that the
knowledge that a person already has will determine, to a large extent, what he or
she can learn. The implications for instruction that can be derived from these
tenets may be used to guide the design of curriculum from precollege through

undergraduate levels [Driver & Bell, 1986;[Schuster, 1987).




Linguistic Complications

It is not only common experience with the physical world that leads students to
develop ideas that contradict those of the physicist. Linguistic elements also play
an important role. Often the picture conjured up in a student’s mind is different
from the meaning the words are intended to convey. For example, a physics
student who reads a problem about a ball that is “dropped” in an ascending
elevator may not realize that in this case the ball initially moves upward with
respect to the ground. When words have both a technical and colloquial mean-
ing, the concepts that are associated with them may be muddled. Terms like force
and energy that are understood in an unambiguous way by physicists are often
interpreted by students in a context-dependent manner [Touger, Dufresne]
Gerace, & Mestre, 1987).

Quite apart from the problems caused by differences in the everyday and
technical use of a word, other linguistic complications may be introduced in the
course of defining scientific terms. For example [Kenealy (1987] examined how
various populations interpreted the statement: “Acceleration is the time rate of
change of velocity.” The definition is from one of the most widely used high
school physics textbooks in the United States [Williams, Trinklein, & Metcalfe]
(1984, p. 48). Participants in the survey included students in eighth grade through
college and high school science teachers. A significant fraction of answers iden-
tified acceleration as an amount of time required to change a velocity.

Examples of Research

Theoretical Constructions: Concept Mapping in
Electricity

An example of research in which a theoretical construction by the student
constitutes the primary source of data is provided by the concept-mapping studies
of[Moreira (1987]. One study involved engineering students in an introductory
physics course at a Brazilian university. The students were asked to draw maps
showing relationships among the main physical concepts that they had studied in
electricity. They were also asked to write key words along the lines linking the
concepts to make explicit the relationship between them. Upon completion, the
maps were discussed on an individual basis with the students who drew them.

The map shown in[Fig. 1.J is a copy of one drawn by a student. The student
has selected electric charge as the most important concept and linked it to electric
current, electric field, and electric potential. However, the field and the potential
are not linked to each other. (These links and the others shown as dotted lines
were added during discussion of the map.) Electric force and potential difference
did not appear on the original drawing. The ensuing discussion revealed that the
student made no distinction between the concepts of potential and potential
difference.

8
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Real Phenomena: Light and Image Formation in
Geometrical Optics

Student observation, or visualization, of real phenomena forms the basis of
much of the research on conceptual understanding in physics. To illustrate how
different investigations can make a cumulative contribution to our knowledge of
how students think about physical phenomena, we review briefly some of the
research involving geometrical optics. Other topics (e.g., dynamics, electric
circuits, or heat and temperature) could also have been used for illustration.

Children’s Ideas about Light. A number of studies have identified some
incorrect ideas about light that are common among children and adolescents (and
sometimes among adults) who have not studied the topic formallyIz It appears
that before about the age of twelve children do not usually recognize light as an
entity independent of its source or its effects. In the early teens, children begin to
identify light as an entity that can travel in space and that can be obstructed and
reflected. Their understanding of how light propagates is limited, however.
Many believe that light travels farther from its source at night than during the day.
They do not separate the idea of light from how bright it is. They also may think
of light as a force acting on an object. Often seeing is considered an activity of
the observer rather than the result of the reception of light by the eye.

From studies such as the foregoing, we can gain some insight about the state
of knowledge with which many students begin formal study of optics. As a result
of instruction in optics in high school or college, most of these naive ideas are
superseded by concepts the physicist uses to explain how light is transmitted
from a source to an observer and how objects can be seen. The vestiges of some
of these ideas may remain, however, and may interfere with the development of a
student’s understanding of how an image is formed and seen.

Formal study of geometrical optics typically begins with the study of image
formation by mirrors and lenses. Students learn how a lens or mirror can form an
image of an object and how the location and size of the image can be predicted.
They often do experiments with mirrors and lenses in the laboratory and almost
always work problems involving images.

Student Understanding of Real Images.  Documentation from research is
beginning to bring about more awareness on the part of high school and college
teachers that the ability to solve standard physics problems is no indication that a
sound conceptual understanding has been achieved. Problems in geometrical
optics are no exception, even though this topic is generally considered one of the

IZFor sources for the statements in the summary, see|Pi 4);| Tiberghien, Delacotel
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simplest in a physics course. The following example illustrates how little we
sometimes know about what students really understand if we look only at their
ability to solve standard problems.

The illustration is taken from research conducted in collaboration with Fred
Goldberg during the 2-year period he spent with the Physics Education Group at
the University of Washington [Goldberg & McDermott, 198¢,[1987). The work
described is based on a task from an investigation on student understanding of the
real image formed by a single mirror or lens. The students involved were volun-
teers from the introductory physics sequence required for majors in engineering,
physics, and other physical sciences. Calculus is required for this course. Most
of the data were collected from individual interviews in which students were
asked a series of questions about a simple demonstration that they could observe.
Each was shown the same demonstration and asked the same questions. The
demonstration was a simple optical system consisting of a lens, a light bulb, and
a screen, all mounted on an optical bench. A real, inverted image of the lighted
filament of the bulb was visible on the screen, as can be seen in

Lens Screen

A F

Investigator Student
[EGc 13l Investigator asks stu-
dent: “Suppose | were to cover Interview Data Summary
the top part of the lens, leaving
the bottom half uncovered. Pre Post
Would anything change on the (N=36) (N=23)

screen?”’ The table shows the
percentage of students who

gave the correct answer both Half of image 95% 55%
before and after instruction

[Goldberg & McDermott, 1984).  Other 5%  10%

Complete image (correct) 0% 35%
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Before discussing a question that caused the students difficulty, we first con-
sider a task that they could perform. In exploratory interviews, we found that
students who had completed geometrical optics could generally use the thin-lens
formula to solve the following problem: Given the focal length and the object
distance, predict the location, characteristics, and magnification of the image.
The students could also solve the problem by drawing an appropriate ray dia-
gram. Furthermore, they were able to check their solutions by using laboratory
apparatus and could make the proper connections between the numbers from
their algebraic solutions and the corresponding distances on an optical bench.

Let us now contrast what the students could do with what they could not do.
During the individual demonstration interviews, the investigator asked the fol-
lowing question: “Suppose I were to cover the top part of the lens, leaving the
bottom half uncovered, would anything change on the screen?” The results in
indicate that many students did not realize that the complete image could
still be seen with only part of the lens.

In reporting the results, we refer to the students who had taken physics in high
school but not yet at the university as prestudents, and those who had completed
the optics portion of the university course as poststudents. None of the prestu-
dents gave the correct response. About one third of the poststudents made a
correct prediction. In spite of the fact that these students knew how to use the
thin-lens formula, many did not know how to answer a basic question that they
had not been asked before. By far the most common response was that only half
the image would be seen if the upper half of the lens were blocked. Most students
claimed that the bottom half of the image would disappear, a prediction con-
sistent with their knowledge that the image in this situation is inverted.

It is not only the mistakes that students make that are of interest. The explana-
tions they give in support of their answers can give us some insights into their
thinking. A particularly interesting form of incorrect reasoning on the lens task is
illustrated by the explanation offered by a student who drew an essentially correct
ray diagram, similar to the one shown in|Fig. 1.4

The student drew two rays from the top of the object: (a) one parallel to the
principal axis (ray #1), and (b) the other toward the center of the lens (ray #2).
After passing through the lens, ray #1 was drawn so that it passed through the
focal point and ray #2 was shown undeviated. The image was located at the
point where the two rays intersected. The student described the ray-tracing pro-
cedure correctly, but then went on to say: “Now if you block off the top part of
the lens, that would block off rays #1 and #2 from getting through, so the
bottom of the image would be blocked. The bottom part of the object, which
corresponds to the upper part of the image, would still be there.”

Thus we have a situation in which a student was able to do all that is usually
required on a typical examination but seemed to have totally missed a crucial
concept in geometrical optics: From each point on an object, there are an infinite
number of rays which, to close approximation, will converge at a single image
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[EIG 14l A student was able to draw this essentially correct ray dia-
gram even though the reasoning that haif the lens would produce half
the image was incorrect [Goldberg & McDermott, 1987).

point after passing through the lens. It is unlikely that a complicated numerical
problem involving several applications of the lens formula would have revealed
as much about conceptual understanding as the simple qualitative question
asked. It is also worth noting that the belief that the two rays used to locate the
image are necessary, rather than merely sufficient, must have developed during
the course of instruction. Unlike some misconceptions, this one cannot be at-
tributed to misinterpretation of everyday experience.

The results on the lens task cannot be explained on the basis that the partici-
pants in the study were poor students. It has been our experience that students
who participate in interviews génerally receive a grade of A or B in physics. The
less capable students seldom volunteer. Moreover, when a multiple-choice ver-
sion of this question was asked on final examinations administered to more than
200 introductory physics students, only about one fourth recognized that the
entire image would remain intact if half the lens were blocked.

Questions for Future Study

The example taken from geometrical optics illustrates the kind of conceptual
detail that research can provide. As mentioned earlier, most of the research so far
has involved concepts in mechanics. To guide the design of curriculum, we need
answers to questions such as those below for all topics in introductory physics.

What ideas do students have before instruction that might interfere with devel-
oping a sound conceptual understanding? Which ideas can be built upon to
promote learning and which need to be changed? Are linguistic elements of such
critical importance that they need to singled out for special attention? What
conceptual difficulties do students encounter during instruction? What strategies
can help overcome these difficulties? How can students learn to distinguish
related concepts? What instructional techniques can help students make connec-
tions between concepts and real world phenomena? We need to know more about



14 MCDERMOTT

how conceptual understanding can be developed and how conceptual change can
be fostered.

REPRESENTATIONS

An inability to use and interpret scientific representations of various kinds (e.g.,
diagrams, graphs, equations) is quite common among physics students. A
number of studies have explored this aspect of student knowledge in which
elements other than conceptual understanding are involved.

Diagrams

Diagrams are a form of scientific representation frequently used in physics as an
aid in the analysis of a physical situation or in the solution of a theoretical
problem. Examples are free—body diagrams in mechanics, ray diagrams in op-
tics, and circuit diagrams in electricity. Diagrams offer a way to organize infor-
mation into an easily accessible form, to show conceptual relationships that may
not be evident from a physical layout or verbal description, and to make
predictions.

Ray Diagrams

The ray diagram drawn by the student for the lens task described in the
previous section is essentially correct in form. The student knows the geo-
metrical algorithm for construction but is unable to interpret the information the
ray diagram contains and do the reasoning necessary to make a prediction. Had
the student drawn the third ray that can be used to locate the image, he or she
might have realized that at least one ray would emerge from the lens. (This
particular ray is drawn from the head of the arrow through the focal point. After
passing through the lens, it emerges parallel to the principal axis.) However, in
that case, the lack of understanding of the ray diagram might have passed
undetected. In spite of having learned the procedure for drawing a ray diagram,
the student cannot extract from it the implicit information.

As might be expected, secondary school students also have difficulty with ray
diagrams. In a study conducted in India, found that very few
students could draw correct ray diagrams for even simple situations. From an
analysis of responses to written test questions, she found that the students were
generally unable to abstract from the situation described the information needed
to construct an appropriate diagram.

Circuit Diagrams

Electric circuit diagrams are another form of scientific representation that
students often do not interpret properly. Difficulties occur both in drawing dia-
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Actual circuit

(a)

Student drawing
(b)

FIG. 1.5. (a) An actual circuit shown to a student during an individual
interview; (b) Circuit diagram drawn by the student, who ignores the
wire AB that connects the resistor and capacitor across the battery

[Eredette & Clement, 1981).

grams to represent real circuits and in interpreting diagrams to answer questions
about hypothetical circuits.

When Fredette and Clement (1981] asked students to draw circuit diagrams of
actual circuits, they found that students frequently did not represent on their
diagrams wires that “shorted out” elements in the circuit. The students seemed
to think that shorting wires do not merit inclusion in a circuit diagram because
they “don’t really do anything.” An example is provided by the circuit shown in
. In the diagram i, which was drawn by a student, the wire
AB that connects the resistor and capacitor across the battery is ignored. The
failure to represent this wire may indicate one or more related problems. The
student may not recognize that virtually all of the current will be in the shorting
wire and may not interpret the situation as eliminating electrically the resistor and
capacitor from the circuit. The student may not understand that the purpose of a
circuit diagram is to show electrical connections as clearly and explicitly as
possible.

found that responses by high school and university students to
questions about identical electric circuits depended upon the way in which the
circuit diagrams were drawn. When asked to describe the current between points
A and B in the circuit o, approximately 60% of the students answered
correctly if the circuit was drawn as i However, only 25% answered
correctly if the circuit was drawn as in. Johsua found that students
tended to view the lines on circuit diagrams as a “system of pipes” through
which fluid can flow. In trying to decide how the current would be distributed,
the students did not analyze the diagram to determine the potential difference
between points A and B. Of course, the students’ difficulties were not purely
representational. As in most cases, difficulty with a scientific representation
cannot be viewed apart from difficulty with the concepts involved.
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R2 R2
A B A B
. " 3
/| L 1l
@ ®)
Circuit Correct Wrong No answer
a 62 31 7
b 26 68 4

[EIG 16l When asked to describe the current in the circuit between
points A and B, approximately 60% of the students answered correctly
if the figure was drawn as in (a}, but only 25% answered correctly if the
circuit was drawn as in (b) [Johsua. 1984).

Motion Graphs

Several recent investigations on scientific representation have been devoted to
motion graphs. Similar types of errors have been found among students at all
levels. Common difficulties include drawing and interpreting graphs as if they
were spatial pictures and trying to use the height of a graph to extract information
contained in the slope.

Microcomputer-based laboratories (MBLs), which were developed at the
Technical Education Research Center (TERC), allow students to watch a graph
being generated as an object moves. In particular, they can see an instantaneous
graph of their own motion ). In one study 52 undergraduates,
who were enrolled in a physics course for students majoring in the humanities,
participated in a single MBL session. These students performed significantly
better than calculus-level students on examination questions requiring interpreta-
tion of motion graphs [Thornton, 1987).

Graph-as-a-picture and slope/height confusion were the most prevalent diffi-
culties identified byl Mokros and Tinker (1987] during clinical interviews with 25
seventh and eighth graders. Mokros and Tinker examined the development of
graphing skills among 125 students who participated in a series of MBL lessons,
in which they made real-time graphs of their own motion. A multiple-choice quiz
was administered as a posttest. The students were asked to match verbal descrip-
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tions and pictures of various motions with a set of motion graphs. The increased
success in choosing correct responses on the posttest compared with preinstruc-
tional performance suggests that there was an improvement in ability to dis-
tinguish the graph of a motion from its physical appearance.

When a motion was described in words, 75% of the students selected an
appropriate position versus time graph. However, when a motion was both de-
scribed in words and sketched in a diagram, the students were less successful in
choosing between the correct velocity versus time graph and one that resembled a
picture of the motion. Another recent study suggests that the simultaneous move-
ment of the student and production of the graph may be an important factor in the
gains reported for MBL instruction. Even a short delay in feedback seems to be
disadvantageous ).

In another investigation on graphing, students in a calculus-level physics
course at the University of Washington were given the diagram of the ball and
track shown in, as well as the following description: The ball moves
with steady speed along the level segment, accelerates down the incline, and then
continues at a higher constant speed along the last segment [McDermott, Roserl-
quist & van Zee, 1987;{van Zee & McDermott, 1987). The students were asked
to sketch position, velocity, and acceleration versus time graphs for the motion of
the ball. The only correct response from 118 students is shown in

From the types of errors that were made, it was possible to identify some
specific difficulties. All but one student neglected the fact that each segment of
the motion takes place in a shorter interval of time than the preceding one. There
were many other more serious errors. A relatively common one was the drawing
of two or more nearly identical graphs. More frequent was the apparent attempt
to emulate the appearance of the track in the shape of the graphs. For example,
half of the students represented the motion along the straight inclined track by a
straight line on the x versus ¢ graph instead of a curved line. Almost as many
drew parallel lines for the first and third segments of that graph, perhaps because
the corresponding track segments were parallel in space.

In an extension of this study, individual interviews were conducted to identify
whether there were generalizable differences in approach between students who
could sketch correct graphs and those who could not. It was found that the
“experts” (successful students) differed from the “novices” (unsuccessful stu-
dents) in several ways. Among the more striking contrasts in procedure were the
following: (a) Experts generally began by defining the axes; novices started by
drawing a line; (b) experts tried to match the shape of the graph to the way the
variable was changing in time; novices often tried to match the shape of the graph
to the shape of the path of the motion; (c) experts used a line to represent a
constant value of x, v, or a during a time interval; novices sometimes represented
a constant value with a single point; and (d) experts checked for consistency in
slopes and heights among graphs; novices seemed to ignore or reject such
relationships.
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Let x = The position of ball rolling along a track
as shown below:

n: e~

A B C D

Sketch graphs of this motion below:

Position
Vs
Time

Velocity
VS
Time

Acceleration

T\i’r:e f__

EGc 17 Only one of the 118 calculus-level physics students was able
to sketch these correct graphs for the motion of the ball on the track
).

t

The generally poor performance on this task demonstrates a widespread in-
ability even among mathematically able students to relate graphs to actual events.
As in the case of the ray diagram and circuit diagrams previously discussed, there
is a lack of understanding of the motion graph as a way of representing and
analyzing real world phenomena.

Questions for Future Study

The examples above illustrate some of the difficulties students have with
diagrams and graphs. The problems are not solely conceptual in nature, although
lack of such understanding may play a critical role. To develop appropriate
instructional strategies, we need to identify the specific difficulties students have
with various representations. Diagrams, graphs, and equations all involve differ-
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ent ways of thinking. The nature of the problems encountered is different in each
case.

An important question is the role of various representations in the develop-
ment of conceptual understanding. Because different representations emphasize
different aspects of a concept, the more ways one can represent a concept, the
deeper one’s understanding is likely to be. What type of instruction can help
students make connections between a concept and various representations of that
concept, between one representation and another, and between various represen-
tations and the real world?

Diagrams, graphs, and equations are useful in contexts other than physics.
The ability to construct and interpret these representations is a valuable skill that
is worth developing in its own right. Results from research indicate that the
ability to use representations does not evolve spontaneously during instruction
but must be specifically cultivated. What type of instruction can promote such
development? How can students learn to transfer facility with a particular form of
representation from one context to another?

REASONING

Many physicists would maintain that one of the most important benefits that can
be derived from the study of physics is development of scientific reasoning
skills. They see problem solving as contributing to this goal. However, there is
no convincing evidence that reasoning ability improves as students work stan-
dard problems in an introductory course.|Arons (1974,11983, [1983,11984 a, b)
has written extensively about the necessity of designing instruction to promote
development of the capacity to reason.

Several kinds of reasoning processes needed for scientific work could be
developed in introductory physics. Among them are proportional, ratio, analo-
gical, and hypothetico-deductive (model based) reasoning. The list is far from
complete and the terms lack sharpness. However, they are sufficiently descriptive
to convey the nature of certain reasoning skills that many physicists consider
important.

Proportional and Ratio Reasoning

Although most students who survive a physics course can reason with propor-
tions to some extent, many do not fully understand the meaning of the number
obtained by carrying out the division specified in the statement of a proportion
(Arons, 1976,[1983). For example, students often do not know how to interpret
the meaning of the result obtained by dividing the mass of a substance by its
volume. By referring to the formula they may recognize the result as the density,
but they do not identify this number as the number of units of mass for each unit
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of volume. In other words, they do not picture a cubic centimeter of the sub-
stance as having a mass in grams numerically equal to the density.

Students have even more difficulty in reasoning with ratios when more than a
simple proportion is involved. For example, unless numbers are supplied, many
students cannot tell what happens to the electrostatic force between two charges
when each charge is increased by a factor of four and the distance between them
is halved. They cannot conclude that the force increases by a factor of 64.

Analogical Reasoning

The ability to reason by analogy is very important in physics. Physicists regularly
use analogies to analyze unfamiliar systems in terms of systems they understand.
Physics instructors make frequent use of analogies in teaching new concepts. For
example, angular velocity and angular momentum are often introduced as analo-
gous to the corresponding linear quantities. Relatively little attention is devoted
to these topics in an introductory course partly because of time constraints, but
also because the student is expected to understand the material by analogy to the
linear situation. However, instructors know from experience that student under-
standing of dynamics is much poorer when rotations are involved.

There has been some research on the use of analogies for teaching concepts
from physics. Gentner and examined how students used “flow-
ing water” and “teeming crowd” analogies in making predictions about the
current in an electric circuit. They were interested in determining whether the
analogy had only a surface effect, that is, affected only the language used in
speaking about the circuit or whether the analogy generated ideas that the stu-
dents used in making predictions. It was found that there was a difference in the
predictions that depended on which analogy was involved. The analogies seemed
to have influenced the way the students thought about the circuits.

In another study,m found that high school students could reason
with analogies if the corresponding quantities and relationships were made ex-
plicit and a great deal of time was devoted to consideration of the analogy. The
focus of the research was not on analogical reasoning but on conceptual change
in mechanics. Clement explored the effectiveness of using analogies to help
students overcome some common misconceptions that seem to be firmly held.
One of these involves the normal force exerted by a table on a book. Many
students are unwilling to accept the idea that a table, an inert object, can exert a
force upward on a book. In trying to address this difficulty, Clement used an
approach similar to one used by Minstrell but placed greater emphasis on reason-
ing by analogy Minsizell 198D,

To make the existence of an upward force plausible, Clement introduces an
anchoring situation to which the target situation (the book on the table) can be
compared. For example, he might ask the students if a hand placed under a book
exerts an upward force. Students usually admit that the hand exerts a force but
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T S

[EG 18 An example of anchor, target, and bridging analogies that
might be used to convince students that a table exerts an upward force
on a book [Clement. 1983; Murray, Schultz, Brown, 8[Clement _1987).

may not believe that an analogy between a hand and a table is valid. One is alive
and one is not. To make this analogy more acceptable, Clement suggests one or
more bridging analogies. A possible sequence is shown in. In this
instance, a book on a coiled spring serves as an intermediate analogy. Although
students usually recognize that the spring can exert an upward force when com-
pressed from above, they often do not see the table and spring as analogous.
Other bridging analogies may then be proposed, such as a book on foam rubber
that sags or a book on a thin board that bends slightly. These analogies have the
advantage that the deformation of the foam rubber or thin board suggests a
mechanism that could account for the ability of the table to exert an upward force
on the book.

When this teaching experiment was tried in several high school classes, there
was a significant difference in favor of experimental over control groups in
acceptance of the physicist’s interpretation that the table exerts an upward force
on the book. Similar results were obtained when analogies were used to help
students understand frictional forces and Newton’s third law. In each case, the
instructors found that the students needed to participate in many discussions
before they would accept the validity of the analogies that were suggested. When
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a belief is strongly held, it is particularly difficult to convince students that an
analogy exists if acceptance of the analogy requires giving up the belief.
Clement and his associates have found that sometimes a long chain of bridg-
ing analogies is necessary to convince some students that the target and anchor
systems are indeed similar with respect to the feature under consideration. To
individualize instruction, the group has designed a prototypical computer pro-
gram for an analogy-based tutor. The computer can generate a series of bridging
analogies that can be selected to make long or short steps on the basis of student

response (Murray, Schultz, Brown, &|Clement. 1987).

Hypothetico-Deductive Reasoning

The construction of a scientific model involves many steps of inductive and
deductive reasoning. The building of a model usually begins with an observation
that may trigger an analogy. The analogy may suggest a hypothesis. The hypoth-
esis is formulated with as few assumptions as possible. Deductions that follow
are tested against other observations. The process is repeated. When necessary,
new assumptions are made and new hypotheses generated. Constantly tested by
observation, the model grows in complexity. It is continuously being verified and
its predictive capability tested.

The process summarized above is important in physics. However, students in
a traditional physics course seldom have the opportunity to become actively
engaged in the type of thinking required. As a consequence, even good students
who are mathematically able are often unable to reason from a scientific model
and may not even understand what a scientific model is.

There are topics in introductory physics that can provide opportunities for
students to gain direct experience in model-building [Arons, 1982). The study of
electric circuits is one. There is some evidence that students who have developed
a coherent model for an electric circuit from their own observations can re-
member and use this model to solve qualitative circuit problems that are difficult
for students who have not had this experience [McDermott & van Zee, 1984).

Questions for Future Study

In addition to content, students taking physics are assumed to be learning the
processes of science. It is not clear that in a typical introductory course that the
ability to do scientific reasoning is consciously developed. To design instruction
to accomplish this goal, we need to identify the specific difficulties students have
with different types of reasoning.

To what extent is reasoning a critical element in conceptual understanding?
Often students are expected to memorize the definition of a concept, such as
velocity or acceleration, but are not expected to demonstrate that they can do the
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reasoning by which the concept is constructed. They may not be able to give a
clear operational definition (or in Reif’s terms, the procedural specification) that
gives an unambiguous meaning to the concept [Heller & Reif, 1984{Reif, 1985;
Trowbridge & McDermott, 1980, [1981). Does going through the step-by-step
reasoning involved in the construction of a concept enhance a student’s ability to
apply the concept, especially in situations that have not been expressly taught?

How capable are students of using a suggested analogy if they are not specifi-
cally shown how to make the necessary correspondences (as they are by Clem-
ent). Can students be taught how to generate their own analogies for new situa-
tions? What disadvantages are there in teaching new ideas by having students
reason by analogy? Can students learn how to recognize the limitations or are
they likely to develop new misconceptions by making correspondences that are
not valid? Would examining many instances in which a concept is applicable and
helping students abstract a common feature be pedagogically wiser than suggest-
ing analogies to them?

What is the most effective way to help students learn to use a scientific model
to predict and explain simple phenomena? Is it sufficient to present a model as a
set of rules that students can memorize and apply deductively, or is the ability to
use a model best developed by requiring students to engage in the deductive and
inductive reasoning that are part of the model-building process?

How can the study of physics contribute to the development of higher order
thinking skills? What kinds of instruction can help students develop the ability to
ask questions of themselves that can help them recognize what they do or do not
understand? How can we elicit from students the type of qualitative reasoning
that can guide them toward coherent understanding of a topic? What role does
awareness of one’s own thinking play in developing the conceptual understand-
ing and scientific skills needed to do well in physics?

PROBLEM-SOLVING

The precision with which concepts are defined and the formal reasoning required
to use and interpret them make physics a fertile field in which to investigate
problem-solving. The primary objective in some studies in this area is to under-
stand human thought processes. In others, the goal is to identify the knowledge
and procedures needed to solve physics problems successfully. Some investiga-
tions are directed toward both of these outcomes.

Many studies on problem-solving focus on identifying differences between
novices and experts. Often a major emphasis is to determine the nature of
expertise and to use this knowledge to develop procedures to effect transition
from the novice to the expert state. The research often has a strong theoretical
element and the construction of performance models may play an important role.



Descriptive Performance Models

In some research projects, the emphasis is on describing differences in what
novices and experts actually do. For example {Chi, Feltovich, and Glaser (1981}
have shown that novices and experts classify physics problems into types in very
different ways. Whereas experts consider general underlying principles, such as
the conservation of energy, novices tend to concentrate on surface features, such
as an inclined plane or a pulley.

Observation of a novice or expert in the process of solving a problem may lead
to other generalizations about differences. A task analysis can be carried out that
describes the procedures that were followed. found that novices
typically work physics problems backwards in a linear fashion, identifying the
unknown quantity and then searching for equations that contain it. Experts typ-
ically work forward, constructing a representation of the problem from general
physics principles and then writing the appropriate equations.

By characterizing the differences between novice and expert behavior, it is
hoped that techniques can be developed to teach novices suitable procedures that
will help them make the transition from novice to expert. For example, Gerace
and Mestre have developed a computer program, the Hierarchical Analysis Tool,
that leads students to analyze problems qualitatively in the manner typical of
experts [Dufresne. Gerace, Hardiman, & Mestre, 1987).

The computer may be used to simulate the differences between novice and
expert behavior and to construct a dynamic performance model for the transition
from novice to expert. For example, [Larkin (1981] has designed a program
(ABLE) that can “learn” from solving successively more complicated problems
in mechanics and thus develop into a more expert program (MORE ABLE). A
more recent program (FERMI) incorporates general problem-solving procedures
that can be applied in different topics in physics, such as fluid statics or electric
circuits [Larkin, Reif, Carbonell, & Gugliotta, 1988). It is anticipated that such
computer models may guide development of effective, intelligent tutoring
systems.

Prescriptive Performance Models

Another approach to developing a model for good problem-solving performance
is theoretical and involves a hypothetical task analysis. From the determination
of what is necessary in the way of tacit knowledge and implicit procedures to
solve a problem succcssfully,m, 1987) constructs a prescriptive model.
In this case, there is no requirement that the model replicate what an expert
actually does. It is recognized that an expert may use intuitive knowledge that
may not be accessible to a novice. The important feature is that the procedures
lead effectively to a solution. The expectation is that by learning these pro-

24
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cedures, students will become better problem-solvers. The instructional mate-
rials that are developed on the basis of the research are evaluated in terms of the
problem-solving performance of students.

From his prescriptive model, Reif has formulated guidelines for teaching
scientific concepts. These include teaching an explicit procedure for specifying a
concept as well as descriptive knowledge about the concept, asking the student to
apply this procedure systematically in various specially selected cases, guiding
the student to summarize knowledge acquired through examining these special
cases, and teaching the student to detect, diagnose and correct errors.

Rule-based Problem-Soiving Models

In research motivated by Siegler’s rule-based studies (1976),
analyzed responses on multiple-choice tests to infer the rules students used to
compare the behavior of two systems. In a study that involved carts rolling on
inclined planes, he identified patterns in student responses and noted that the
strategies employed often seemed to depend on the order of the questions.

A different approach to problem-solving research is illustrated by the work of
(White and Frederiksen (1987). A goal of the research was the development of an
effective method for use on a computer to teach students how to troubleshoot
electric circuits. The procedures that experts appear to use to solve circuit prob-
lems were analyzed and put into the form of rules. The rules were arranged into
sets (student models) that increase in size and complexity as they approach the
level of the expert. Instruction on the use of this problem-solving model begins
with the presentation of a simple set of rules sufficient for solving simple circuit
problems. The students gradually progress to more difficult problems that require
use of increasingly larger numbers of rules for solution. The rules are taught as
the need for them arises. On the basis of their ability to solve more difficult
problems, the students are described as moving from a novice to a more expert
state.

Questions for Future Study

The ability to solve standard problems is frequently taken as a measure of
student understanding in physics. It is often assumed that successful problem-
solving involves all the other aspects of understanding that have been discussed.

How much does instruction in how to solve problems contribute to student
understanding of concepts and representations? Does practice in problem-solving
promote the development of scientific reasoning ability so that a student can
reason successfully about new situations? When students follow prescribed pro-
cedures, are they thinking of the physics involved or is their attention devoted to
following directions? What happens when problems are presented that cannot be
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solved by the patterns taught? To what extent do students transfer problem-
solving techniques learned in one context to new areas and to domains outside
physics?

How can the computer help improve problem-solving performance? Should it
be used to calculate, to simulate, to provide drill and practice, to tutor? Is there
sufficient similarity between computers and the human mind to gain useful
insights for instruction from models of novice/expert behavior or from models of
transition from novice to expert? How should intelligent tutoring systems be
designed?

Is the fact that mathematical complexity does not have to limit the selection of
problems for a physics course an advantage or a disadvantage? Removal of this
constraint allows the use of real-world problems that may be quite complicated.
For example, the inclusion of air resistance and other nonlinear phenomena
makes possible consideration of more realistic situations in mechanics. Are
students sufficiently motivated by real-world examples to warrant using them in
place of problems that are conceptually simpler and more readily understood?

CONCLUSIONS

It is a consequence of the broad scope of activity in research in physics education
that the brief overview presented here has omitted so much of what has been
done in the last few years. Only a few examples of recent work in mechanics
have been cited and even fewer illustrations taken from optics and electricity.
Some topics, such as heat, have not been included. Suggestions for future study
have been limited to questions for which a foundation was laid in the discussion.

The emphasis on subject matter reflects the disciplinary orientation from
which the paper was written. Underlying the discussion is the belief that many of
the difficulties students encounter in learning physics are a consequence of the
nature of the material and must be addressed in that context. Other difficulties
that may cut across subject matter boundaries are also often best treated in the
same way since the ability to transfer reasoning skills from one context to another
seems to develop slowly. Our knowledge about how students think is still too
incomplete to provide a firm foundation for constructing useful theories of gener-
al applicability. Thus it seems prudent for the present to continue acquiring data
rich in conceptual detail and to concentrate on developing instructional strategies
that are demonstrably effective with specific content.

If the major goal of research is to improve instruction, then the ultimate test of
its validity must involve students and teachers. We need to consider carefully
what students should be expected to know and be able to do as a result of
studying a particular body of material. It is important that the objectives for
teaching introductory physics represent some sort of consensus among instruc-
tors. We must recognize that we cannot make realistic recommendations for
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improving instruction without consulting those who teach the subject at the level
involved. To influence practice in the classroom, the results from research should
be reported in journals that physics instructors read and in language that they can
understand. The vocabulary used should be straightforward and not require fa-
miliarity with the psychological and educational literature to be comprehensible.

In working toward a scientific practice of science education, we must be sure
to maintain continual blending of research with curriculum development and
instruction. The three components reinforce one another and their joint presence
helps insure that a project is kept relevant to the needs of students and teachers.
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