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Preface

The subject of the book is in the broad area of statistics. More precisely, it deals 
with topics of quantitative research methods needed, most commonly, for 
research with human subjects.

The book focuses on the design of experiments and the analysis of experi­
ments and surveys for quantitative research. It is relevant to small and large 
scale research both in real-world settings and in laboratories.

The book is intended as a textbook for courses in quantitative research 
methods and as a self-study and reference book for the postgraduate student or 
professional researcher in psychology, health or human sciences.

Material is presented at a sufficiently conceptual level to enable the user to 
be confident in applying the material in a variety of contexts.

The book concentrates on decision-making and understanding rather than 
on calculation and derivations. It is assumed the user has access to an 
appropriate computer package such as Minitab, SPSS, SAS, Statview, Super- 
ANOVA, CSS, BMDP, SYSTAT, Genstat etc.

The main applications of the book are in psychology, education, human, 
social and life sciences, medicine, and occupational and management research.

This is a second level text. The reader is expected to have previously 
attended a course in basic statistics or to have read an introductory textbook. 
This results in the book being more concise than other books in this area.

It introduces the concepts, principles and techniques needed by the empirical 
researcher or student carrying out a practical project. The exercises which 
accompany the explanatory material enable the reader to develop competence 
with the concepts and techniques.

The book deals thoroughly, yet without recourse to mathematics, with 
several important topics which are usually treated in eitLx a superficial 
‘cookbook’ form or in a heavily mathematical manner. These include:

Repeated measures designs
Unbalanced designs
Non-randomized designs
Model building and partition of variance
Covariate adjustment and multiple regression
Elimination of the effects of nuisance variables
Simplified decision tools for choice of design or analysis

Power and efficiency are treated from a practical point of view showing how 
they are affected by choice of design, category and continuous covariates and 
sample size.
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A unique extension of the Venn diagram is introduced as an aid to 
understanding the unbalanced design.

The book is arranged in three parts. Part One reviews the basic concepts of 
statistics relevant for design and analysis and covers the principles and practice 
of four basic designs appropriate to research based on experiments. These 
designs are applicable to a range of situations in which the researcher has a 
degree of control over the conditions. Analysis of variance, which underpins all 
these research designs, is developed by an intuitive rather than a mathematical 
approach.

Part One also includes sections on comparisons and contrasts and on power, 
sensitivity and sample size and the associated decision-making.

Part Two develops the basic designs discussed in Part One in order that they 
can be applied to research carried out in field and workplace settings or where 
the researcher has limited control over the situation.

It includes sections on unbalanced analysis of variance, multiple regression 
and the elimination of the effects of factors which undermine the validity of 
research studies.

These techniques include the methods for surveys and comparisons based on 
non-equivalent groups often required in social or health research or marketing.

Part Three extends the basic designs of Part One to situations where, in 
research under controlled conditions, more factors are required or the same 
individuals contribute measurements on more than one occasion. These 
designs are central to the work of the professional researcher carrying out 
experiments under controlled conditions in laboratories or community or 
workplace environments.

There are exercises at the end of each chapter from Chapter 4 onwards. 
These are carefully matched to each chapter’s content. A separate appendix of 
exercises is located after the final chapter. Many of these further exercises draw 
on material from several chapters. Worked solutions are provided to many of 
the exercises.

Acknowledgements are due to members of the Psychology Division at the 
University of Hertfordshire for several sets of data used as examples.

My thanks also go to the approximately 400 students who, over a number of 
years, helped me by serving as a sceptical and critical audience for my teaching.

Next, they go to those who provided assistance with the production of the 
text: the wonderful Margaret Tefft, whose tireless efforts made light of a huge 
task; Hilary Laurie, who tried to show me how to write about technical ideas 
for a non-technical audience; Jessica Bennett who tidied up the text; Josie who 
typed day and night; colleagues Ian Cooper, who helped organize the exercises, 
Mike Beasley, who read early drafts and gave sound advice; and Michaela 
Cottee who identified errors in the language and logic of the final draft.

Finally, they go to Pamela Welson who continued to help and believe in me 
even while the work was going badly.
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Introduction 1

1.1 STRUCTURE AND SCOPE OF PART ONE

1.1.1 Structure

This chapter sets out the framework in which the material of this part of the 
book is located and identifies the aims of the design of experiments.

Chapter 2 presents examples of each of the four experiment designs dealt 
with. It includes an introduction to some of the concepts and issues 
relevant to them.

Chapter 3 presents the concepts of design and analysis for experiments in 
a degree of detail sufficient for understanding the later material.

Chapters 4-7 each deal in detail with one of the four designs that were 
introduced in Chapter 2.

Chapter 8 extends the analysis of the designs of Chapters 4-7 to suit 
them to particular research issues which occur commonly in practice.

Chapter 9 is concerned with the number of individuals to be included in 
the research and the choice of appropriate design.

1.1.2 Scope

Part One introduces designs, analyses, principles and techniques for com­
paring alternative conditions in experimental research.

In all experiments dealt with it is assumed that the response of the 
individuals taking part is measured on a continuous scale. A continuous 
scale is one in which the numerical values refer to an underflying con­
tinuum of amount or quantity. It is further supposed that the measurement 
scale has the equal value interval property (i.e. one unit has equal value 
over the whole scale).

The reader is assumed to have completed a basic non-mathematical 
course in statistical methods and to be familiar with the basic ideas of 
hypothesis testing, Mests, correlation and regression.

1.2 INFERENCE FOR DESCRIPTIVE AND EXPERIMENTAL 
RESEARCH

Descriptive research is essentially an exercise in gathering data. The data 
may be gathered by direct observation, questionnaire or some other
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method. Some considerable intervention in the lives of individuals may be 
involved: for example, they may be asked to keep a diary or follow a special 
diet. Such intervention is made only to provide the conditions under which 
the observations are to be made; the intervention is not made in order to 
provide a comparison with the absence of intervention or with some 
alternative form of intervention.

In descriptive research the design could take one of several forms. It may 
be a case study; for example, an account of the development of speech in a 
child with 2l particular learning difficulty. It may be a study of a sample of 
individuals; for example, a survey of the extent of examination nerves in a 
sample of students.

Sometimes research is carried out with very limited aims. A nursing 
manager may want to carry out a small research project whose end result 
will be an improved oganization of a hospital ward. In this case there may 
be no intention to generalize the results of the research to other hospital 
wards. Very often, however, the researcher wishes to obtain knowledge 
from the research which can be applied elsewhere. This is true whichever 
form of descriptive research design is used. In other words, the researcher 
intends the findings of the particular study to be generalized to other 
individuals or situations.

Generalizing the results of research can be based on common-sense 
judgements of the similarity of situations. Such judgements have an 
important place in scientific work. However, there is also available a formal 
method for generalizing the findings from descriptive research. This is the 
method of statistical inference.

Statistical inference uses the mathematics of probability to decide 
whether the findings of the study are generalizable to the wider population 
of individuals from which the study sample was drawn. If this inferential 
form of generalization is to be used, appropriate features need to be 
designed into the study. The main requirement is that the sample of 
individuals used in the research be taken randomly from the appropriate 
population of individuals (see section 3.3) and be of sufficient size.

Descriptive research has an important role in both inferential and 
non-inferential forms. Its limitation, however, is that it is not capable of 
establishing that a particular behavioural or environmental factor causes a 
particular effect or response in the individuals studied.

1.3 WHAT IS EXPERIMENTAL RESEARCH?

Experimental research is characterized by the researcher arranging an 
intervention in the lives of individuals in order to assess its impact on them. 
In this text an experiment is understood to be a formally arranged 
intervention which aims to identify cause-effect relationships. The interven­
tions are usually referred to as experimental conditions. The effects of 
different interventions are compared. If the interventions are delivered 
according to proper experimental procedure it may be possible to conclude 
that the nature of the intervention or condition (the independent variable or
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i.v.) causes an effect in some aspect of the individuals (the dependent variable 
or d.v.).

For example, an experiment could show that the extent of availability of 
sample examination papers (the i.v.) has a causal influence on the amount of 
examination nerves (the d.v.).

Experimental research requires both the proper experimental procedures 
and the appropriate sampling to ensure that inferential generalization is 
available. The main requirement for proper experimental procedures is that 
individuals be randomly allocated to the conditions.

1.4 THEORY TESTING, GENERALIZATION AND COST- 
EFFECTIVENESS

Behavioural science is concerned with the development of theory about 
behaviour. Since individuals differ, one from another and one group from 
another group, theory development in this area clearly faces difficulties that 
are rarely encountered in the physical sciences. A theory is a general 
explanation of a phenomenon. Thus a theory which applied only to the 
behaviour of the children in one teacher’s infant class would have lower 
scientific value than a theory which applied to all British infant children.

Experiments test theories. A theory is a general statement. It is in this 
sense that the results of an experiment are generalizable. Likewise, if the 
theory is true, then the experiment which tests it must be replicable on 
other occasions and on other samples of individuals.

Sampling fluctuation is the phenomenon for successive samples to differ 
from each other even though they are taken from the same population. It is 
difficult, when carrying out experiments on behaviour, to distinguish 
generalizable, real phenomena from the effects of sampling fluctuation. This 
problem is particularly severe if the sample is small.

The size of the sample is the main design feature influencing the ability of 
the experiment to distinguish a real phenomenon from an effect of sampling 
fluctuation. If the sample is too small the phenomenon or effect arising 
from the theory being tested is unlikely to be distinguishable from the effect 
of sampling fluctuation. This is referred to as the problem of low power or 
low sensitivity. Experiments should be conducted on large enough samples 
of individuals to ensure sufficient power but not so large as to be 
prohibitively expensive to carry out. (See sections 3.8 and 3.9 for dis­
cussions of power and sensitivity.)

Obtaining the correct balance of cost and power is the cost-effectiveness 
aim of the design of experiments.

The other main aim is the validity aim. There is discussion of this in 
sections 3.11 (bias) and 10.3.1 (confounding).
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basic designs

2.1 SINGLE-FACTOR INDEPENDENT GROUPS DESIGN

The single-factor independent groups design refers to an experiment in which 
members of a sample of individuals are randomly allocated to various 
conditions. The design is also known as the between-subjects design. This 
name derives from the fact that the comparison between different conditions 
is a comparison between groups of subjects. The purpose of the experiment is 
to compare the effects of the different conditions on the individuals. An 
individual’s response to a condition is expected to manifest itself through the 
scores or values of a scale or measure which is known as the dependent 
variable.

Mean scores are obtained under the influence of the conditions and the 
mean scores of the groups are compared. Differences among the means of the 
groups are taken as an indication of possible differences among the effects of 
the conditions.

Random allocation of individuals to conditions is used. This is an 
intervention in individuals’ lives. It is the distinguishing feature of experimen­
tal research. It is an essential component of the design if causal inferences are 
required.

The various conditions are assumed to be comparable. All, therefore, may 
have the same effect. The researcher may hope that the conditions differ, but 
the possibility that they do not must be tenable. (Otherwise there would be no 
need for the experiment.)

The set of comparable conditions included in the experiment is known as a 
factor. The conditions that constitute the factor are sometimes known as the 
levels of the factor.

The effect of the factor refers to the differences in mean scores of the various 
groups of individuals influenced by the conditions.

The factor is also referred to as an independent variable or i.v. It is a category- 
type i.v. because the levels of the factor serve to categorize individuals.

For example: it is required to compare the number of words remembered 
from a list under different time pressure conditions in order to investigate the 
effect of time pressure on recall for words. The three levels of the factor are:

1. No time instructions given, the subject is asked to read the list at his or 
her own speed.

2. The subject is asked to read the list in five seconds.
3. The subject is asked to read the list in ten seconds.
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The dependent variable is the number of words recalled from the list 
under test conditions.

Thirty randomly selected individuals (experimental subjects) are allo­
cated at random, ten to each of the three conditions.

Note that random selection and random allocation of subjects are 
required to conform to the sampling and proper experimental procedures 
referred to in sections 1.2 and 1.3. This ensures that inferential generaliz­
ation is available and that the experiment is capable of identifying a causal 
influence of the independent variable on the dependent variable.

After reading the list each subject’s recall is tested and the number of 
words recalled becomes the score for that subject. The mean scores for the 
three groups were 5.2, 3.8 and 9.0 words respectively. This result is 
displayed as a bar chart in Fig. 2.1. The overall mean score in this example 
is 6.0 words. Hence the apparent effect of the first level of the factor is to 
lower the scores by 0.8, on average, relative to the overall mean.
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Fig. 2.1 Word list recall for three time limits.

The second and third levels lower and raise the mean score by 2.2 and 3.0 
respectively. Hence the apparent effect of the factor can be represented
as:

(-0 .8 , -2 .2 , +3.0)

This bracketed expression is a set of incremental and decremental elements 
which add to zero and contain the information about the size and direction 
of the effect of the factor provided by the experiment. (The value of the 
overall mean itself should not be regarded as an effect of the factor in the 
sense used here.) Throughout this book the incremental/decremental 
elements that describe the size of the effect of a factor will be referred to as 
deviations.

The differences among the means of the groups were described as the 
apparent effect of the factor because some differences among the means 
would be expected even if three identical conditions had been used. This 
follows from the random allocation of individual subjects to the condition 
groups. The groups differ because they contain individuals who differ; each 
individual has a unique score.



Introduction to four basic designs

In other words, expressed more technically, the chance effects of samp­
ling lead to sampling fluctuation among the means of the groups. It is to be 
understood that the apparent effect of the factor is a combination of the 
pure effect of the factor and the effect of sampling fluctuation. These two 
effects can be said to be confounded.

The statistics technique known as analysis of variance (ANOVA) has 
been developed to assist the experimenter in deciding whether the differen­
ces among mean scores associated with the conditions or groups are due to 
the effect of sampling fluctuation combined with the effect of the conditions 
or due to the effect of sampling fluctuation alone. The decision that must be 
made is whether or not there is any pure effect of the factor (this is the real 
phenomenon discussed in section 1.4). The making of the decision is 
discussed further in sections 3.7 and 4.2.

2.2 SINGLE-FACTOR REPEATED MEASURES DESIGN

The repeated measures design can sometimes serve as an alternative to the 
single-factor independent groups design introduced in section 2.1. Instead 
of allocating subjects at random to different groups so that each group 
experiences one condition, the subjects are kept in a single group and each 
subject experiences all the conditions in succession.

Whereas in the single-factor design with independent groups the condi­
tions are compared by making between-group or between-subject compari­
sons, in the repeated measures design the conditions are compared by 
making comparisons within the one group of subjects, or within-subjects 
comparisons.

For example: an experiment is carried out on the interference between 
functions in the same or different hemispheres of the brain. Subjects were 
required to compare mean times for balancing a dowel rod on the left-hand 
index finger under three conditions: silent, speaking and humming. Four 
randomly sampled individuals took part in the experiment. The dependent 
variable is the balancing time, which is scored in seconds.

Three measurements of the dependent variable are made on each subject. 
Each subject’s balancing times are set out in Table 2.1. The mean scores 
under the three conditions were 15.6, 8.1 and 9.6 s respectively. This result 
is displayed as a bar chart in Fig. 2.2.

Table 2.1 Balancing times under three conditions

Silent Speaking Humming

Balancing Subject 1 10.2 11.9 7.5
times Subject 2 23.9 5.5 7.0
(seconds) Subject 3 17.0 6.0 12.1

Subject 4 11.3 9.0 11.8

Means 15.6 8.1 9.6
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Fig. 2.2 Dowel balancing times for three conditions.

Subtracting the overall mean score from each of the three means gives 
the apparent effect of the factor, expressed as deviations from the overall 
mean of 11.1, as:

( +  4.5, -3 .0 , -1 .5)

As in the case of the independent groups design introduced in section 2.1, 
this apparent effect of the factor is a combination of the pure effect of 
the conditions combined with the effect of sampling fluctuation. (Sampling 
fluctuation in this design refers to randomly selected subjects show­
ing different patterns of response to the conditions. For example, one 
subject balancing best while humming, another doing best while silent 
and so on.)

Thus the effect of the factor is confounded with sampling fluctuation in 
the repeated measures design, as it is in the independent groups design.

The analysis of variance technique is used to assist the experimenter in 
deciding whether the differences among mean scores of the conditions are 
due to the effect of sampling fluctuation alone or to sampling fluctuation 
in combination with a pure conditions effect. This is discussed further in 
section 4.2.

In general the repeated-measures design is more powerful than the 
independent groups design, but it is often unusable because of problems 
arising from the need to obtain scores on the dependent variable several 
times on each subject. Typical problems are tiredness of subjects, drop­
out and practice effects.

However, there is no random allocation of subjects to conditions in this 
design. This means that differences among the mean scores shown not to 
be due to sampling fluctuation are not necessarily due to differences 
among the effects of the conditions. Alternative explanations need to be 
considered based on considerations of the timing and sequencing of the 
experiencing of the conditions by each individual. The design can be 
strengthened by allocation of the conditions in random order to each 
individual subject.
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2.3 TWO-FACTOR DESIGN

2.3.1 Introduction

The two-factor design is an arrangement of conditions which enables the 
same individuals to serve as subjects simultaneously in the investigation 
of two distinct factors, each with several levels. This arrangement can only 
be used if the same dependent variable is used throughout.

Example of a two-factor experiment

An experiment was carried out to examine the effects of type of teach­
ing and type of counselling on children with behaviour and reading 
problems. A random sample of 40 children from the appropriate popula­
tion was randomly allocated, 10 to each of four groups. Each group 
received one of the two conditions from each of Factor 1 and Factor 2:

Factor 1: Type of counselling
level 1: Individual for i h  
level 2: In groups for 1 h 

Factor 2: Type of teaching 
level 1: Withdrawal from normal class 
level 2: Stay in normal class

The dependent variable is the improvement in reading score after 15 weeks 
experience of the allocated conditions. The four groups are displayed 
with their mean improvement scores as cells o a  the layout diagram in 
Fig. 2.3.

Factor 2: Type of teaching 

Withdrawal Stay in class

Individual +1.7 +4.5

Factor 1: Type of counselling

Group +5.5 +5.6

Fig. 2.3 Layout diagram for two-factor design.

Each subject is measured under the combined influence of two condi­
tions: one which is a level of the first factor and one which is a level of the 
second factor. For example, the group of subjects represented by the cell in 
the top right-hand square in Fig. 2.3 experiences the stay in class type of 
teaching and the individual type of counselling, and on average the ten 
children in the group improve their reading score by 4.5 points.

Such a design makes possible the comparison of the two types of 
teaching for all the subjects regardless of the type of counselling they 
experienced. This comparison is known as the main effect of the factor. This 
factor is called type of teaching. A research question that could be answered
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by reference to the magnitude of this main effect would be: ‘Does the type 
of teaching influence improvement in reading scores?’.

In numerical terms it can be seen that the mean improvement score for 
the 20 children experiencing the withdrawal from class teaching is 
(1.7 + 5.5)/2 = 3.6 and the equivalent value for the 20 stay in class children is
5.05. Hence the stay in class approach appears to be better. This result is 
displayed as a bar chart in Fig. 2.4.
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Fig. 2.4 Main effect of type of teaching on reading score improvement.

As for the single-factor designs described in sections 2.1 and 2.2, 
however, it is possible that differences among the means of the four groups 
of children are due solely to sampling fluctuation with no contribution 
from the conditions under which the children are taught. The analysis of 
variance technique described in section 4.3 estimates the variation due to 
sampling fluctuation. This makes possible the identification of the portion 
of the variation among the means that is due to the effect of the 
conditions.

The comparison of the two types of teaching is also possible, restricted to 
the subjects who received individual counselling. This comparison is known 
as the simple effect of the type of teaching under the individual counselling 
condition.

A research question that could be answered by reference to the mag­
nitude of this simple effect would be: ‘Does the type of teaching 
influence improvement in reading scores for pupils receiving individual 
counselling?’.

The answer is based on the comparison of the values 1.7 and 4.5. 
Apparently, the type of teaching does affect the improvement in reading 
scores for the individual counselling children. Note, however, that the type of 
teaching apparently has almost no effect for the group counselling children. 
One simple effect is quite large, the other is almost non-existent. Figures 
2.5(a) and 2.5(b) illustrate these two simple effects.

Also available are the main effect and two simple effects of the type of 
counselling factor. Additionally the interaction of the two factors can be 
investigated.
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Fig. 2.5 Simple effect of teaching type for (a) individual and (b) group counselling.

Interaction

The interaction is equally the extent to which the two simple effects of type 
of teaching differ from one another and the extent to which the two simple 
effects of type of counselling differ from one another.

A research question that could be answered by reference to the magnitude 
of the interaction would be: ‘Is the benefit of group counselling relative to 
individual counselling more marked for pupils receiving withdrawal remedial 
help than for those receiving remedial help staying in their normal class?’.

The answer to this question appears to be ‘yes’, since for the withdrawal 
children the benefit is (5.5 —1.7) = 3.8 points whereas for the stay in class 
children the benefit is only (5.6—4.5)= 1.1 points. Figure 2.6 displays this 
comparison.
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Fig. 2.6

See section 6.3 for a discussion of interaction and simple effect.

2.3.2 Randomized block design

This is a special version of the two-factor design in which only one of the 
factors is the focus of the investigation. The second factor is included to

type of teaching 

arison of simple effects.

Izf group 
□  individual
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facilitate the study of the first. This second factor is referred to as a blocking 
factor or as a category-type covariate (‘category-type’ because its levels 
represent categories to which subjects belong and ‘covariate’ because its 
levels correspond to variation in the dependent variable).

The blocking factor has the effect of making the scores of the subjects 
in any one group or cell more homogeneous, which in turn increases the 
power and sensitivity of the design. There are two types of blocking 
factor:

1. It may be an intrinsic factor, such as the sex of the subjects, in which 
case the experiment can be viewed as a single-factor design run several 
times with separate and homogeneous groups of subjects.

2. It may be an extrinsic factor, such as day of the week or which of a 
group of interviewers carried out the interview, in which case the 
experiment can be viewed as a single-factor design run several times 
under different conditions.

Figure 2.7 illustrates these two types of blocking factor.

treatments treatments

11 T2 T3 T1 T2 T3

males

females

randomized block with 
homogeneous subjects

randomized block with 
homogeneous conditions

Fig. 2.7 Layout diagrams with different types of blocking factor.

In both cases the same increase in power could have been achieved by 
either of:

1. Restricting the subjects to a single homogeneous group; for example, 
males only.

2. Restricting the conditions to greater uniformity; for example, a single 
day of the week or single interviewer. Such a restriction, however, would 
have the effect of limiting the generalizability of the findings.

This design is known as the randomized block design because subjects are 
allocated at random to the conditions whilst being organized into several 
distinct blocks. The advantage of the randomized block design is that it 
makes possible a more powerful or more sensitive test of a factor without 
sacrificing generalizability of the findings or economy. See section 3.8 for a 
discussion of power.
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2.3.3 Reasons for using a two-factor design

There are four reasons for using a two-factor design instead of either one or 
more single-factor designs.

1. Cost-effectiveness
Subjects are simultaneously taking part in two experiments. This is 
beneficial for cost-effectiveness.

2. Interaction
Additional information is provided on the interaction between the two 
factors.

3. Power or sensitivity
A second factor may increase the power or sensitivity of the test of 
the factor being investigated (see sections 3.8 and 3.9 for a discussion 
of power and sensitivity). This is achieved by introducing a second 
factor which is known to have an effect on the dependent variable.

4. Combining single-factor experiments
A two-factor design can combine the results of several single-factor 
experiments into a single analysis. For example, suppose an educational 
experiment was conducted as a single factor design on successive cohorts 
of pupils or in several schools and it is required to carry out a single 
test of the hypothesis that the conditions factor has an overall effect 
on the scores on the dependent variable. Then it is only necessary to 
regard the cohorts or schools as the different levels of a blocking factor 
and the whole as a two-factor design for the desired result to be 
obtained.

The analysis of variance and test of hypotheses for the two-factor design 
are discussed in Chapter 6.

2.4 SINGLE-FACTOR INDEPENDENT GROUPS DESIGN WITH 
USE OF COVARIATE

The randomized block design introduced in section 2.3.2 leads to increased 
power because the subjects in any one cell are more homogeneous with 
respect to their scores on the dependent variable. This follows because the 
blocking factor, a category-type variable (e.g. sex) is related to the scores on 
the dependent variable.

A similar situation can arise if some continuous-type variable (e.g. IQ) is 
known to be related to the scores on the dependent variable. Such a 
variable is called a concomitant variable or covariate.

The technique of analysis of covariance (ANCOVA) adjusts the scores on 
the dependent variable to take account of the values of the covariate by a 
regression-like technique. This makes the individual subjects taking part in 
the experiment appear to be more homogeneous. This in turn has the effect 
of reducing the effect of sampling fluctuation and so increases the power 
and sensitivity of the design.

This design is very useful provided the cost of obtaining the covariate
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scores is not too high and the covariate has a linear (i.e. straight-line) 
relationship with the dependent variable.

For example: rats’ pulse rates under stress were tested after treatment 
with either drugs A or B. Pulse rate was known to depend on the weight 
of the rat, as shown in Fig. 2.8. (Note that this graph shows the approxi­
mate straight-line relationship which is required for the ANCOVA 
technique.)

weight (grams)

Fig. 2.8 Pulse rate versus weight for rats.

Eighteen randomly selected rats were allocated at random to drug 
treatment group A or B. After the experiment the results were as set out in 
Table 2.2 and displayed in Fig. 2.9.

Table 2.2 Pulse rates and weights of 18 rats

Rat
no.

Drug Pulse Weight Rat
no.

Drug Pulse Weight

1 A 330 460 10 B 330 450
2 A 290 450 11 B 310 440
3 A 285 380 12 B 300 408
4 A 280 370 13 B 270 445
5 A 275 420 14 B 260 380
6 A 270 375 15 B 245 425
7 A 270 350 16 B 240 380
8 A 260 365 17 B 235 320
9 A 245 355 18 B 220 330

Mean 278.3 Mean 267.8

Parallel straight lines are fitted by regression separately to the A and B 
plotted data points. The lines are used to adjust the pulse rates in each 
group to what they would be if the rats had identical weights. The 
adjusted pulse rates are displayed in Fig. 2.10. Notice how much more 
homogeneous are the adjusted pulse rates as compared to the unadjusted 
pulse rates.

The result of the experiment is to find that drug A leads to a mean pulse 
rate of 278.3, whereas drug B leads to a mean pulse rate of 267.8.
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Fig. 2.9 Pulse rate versus weight for rats undergoing drug treatment.
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Fig. 2.10 Pulse rates adjusted for weights for drug-treated rats.

The analysis of variance for the single-factor design with covariate 
(ANCOVA) is discussed further in Chapter 7.
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and techniques

3.1 VARIANCE

Variance is a measure of spread or scatter in a group of scores. Variance 
is based on the sizes of the deviations from the mean of each of the scores 
in the group. Hence a group of identical scores has a variance of zero. More 
precisely, variance is the mean of the squared deviations.

For example, consider the balancing times of the four individuals in the 
silent condition in the example in section 2.2.

Scores (in seconds) 10.2 23.9 17.0 11.3 (mean = 15.6)
Deviations (score—mean) —5.4 8.3 1.4 —4.3

Note that the deviations add to zero. This follows from the nature of the 
mean.

The variance is the mean of the squared deviations:

Variance—(—5-4>2 + ( 8 y :< 1-4»1 + (—43)2
4

29.16 +  68.89 + 1.96+18.49= -----------------  = Zy.oZj
4

The sum of squared deviations is often known as SS or just sum of squares.
It is sometimes referred to as the corrected sum of squares to distinguish it 
from the sum of squares of the raw scores.

Estimating variance

When the purpose of the variance calculation is to estimate the variance of 
a population from a small sample the formula is modified. The sum of 
squared deviations, instead of being divided by n, the number of deviations, 
is divided by (n—1), the number of independent deviations. The general 
term for the number of independent deviations is degrees of freedom. In the 
above example, it is evident that not all four deviations are independent. 
This follows since they are known to add to zero. If it were known that the 
first three were —5.4, 8.3 and 1.4, the fourth one would have to be —4.3. 
So only (n— 1) or three are free. In other words the degrees of freedom are
3. Degrees of freedom is often abbreviated to df.
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When a variance is being estimated the formula is often seen in the 
following form:

SS
variance estimate= -r?

« /

This is sometimes called a mean square and abbreviated to MS. The 
square of the Greek letter sigma is usually used to stand for a value of a 
population variance. It is written a2. Commonly s2 is used for the value of 
an estimate of a population variance based on sample data.

When analysing data from experiments, variances of means are of 
interest. Variances of means are related to variances of scores by a simple 
relationship. This is discussed in the next section.

3.2 VARIANCE OF MEANS

When a population of individuals is sampled several times the result is a 
number of equivalent but different groups of individuals. If each individual 
contributes a score then there is a mean score for each group. These group 
means will, in general, differ. Variance is used to measure the amount of 
difference or spread among the group means.

If the scores in the sampled population have a variance represented by 
o2 then the means of samples of n individuals (i.e. n subjects per group) will 
have a variance equal to

n

This is called the variance of means and is represented by the symbol oceans- 
Most analysis of variance (ANOVA) is discussed in terms of estimates of 

the variance of scores obtained from variances of means. In other words, 
the reverse form of the above formula is used:

a2 =  n(variance of means)

The sum of squared deviations part of this is calculated as:

SS =  n(sum of squared deviations among means)

The multiplier n in the above formula often causes puzzlement. The logic 
for it, however, is straightforward. It is that the variance of individual 
scores is being analysed. The n is a weight used to scale up the estimate 
from an estimate of the variance of means to an estimate of the variance of 
individual scores.

Example of SS calculation

Take the example data from the single-factor independent groups design in 
section 2.1. There are 10 subjects per group and three groups, whose means 
are 5.2, 3.8 and 9.0. The overall mean is 6.0.
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The deviations among the means are found by subtracting the mean of 
means, which is 6.0, from each of the three means to get:

-0-8 -2 .2  3.0

These are squared for insertion into the above formula:

SS = 10(0-82 + 2.22 + 3.02) =  144.8

It will be seen that all mean squares encountered in analysis of variance are 
estimates of variances of individual scores in the sampled population. Not 
all are equally good estimates, however.

3.3 RANDOM SAMPLING AND RANDOMIZATION 

Random sampling

In so far as research aims to discover or establish truths that are in some 
sense general truths, two conditions must prevail. Firstly, there must be a 
defined population of individuals to which the truths are to apply. The size 
of this population and its durability over time influences the scientific value 
of the truths. Secondly, the individuals investigated, whether by experiment 
or survey, must be randomly sampled from this population.

Random sampling requires that each individual member of the popula­
tion has the same chance of being selected for inclusion in the sample. Most 
behaviour research is carried out on subjects easily accessible to the 
researcher. These subjects form a sub-population. They are not a proper 
random sample from the population to which the findings are to be 
generalized. This does not mean that any attempt at random selection 
should be abandoned. Rather, the experimenter should select randomly 
from the sub-population and accompany the write-up of the research with 
a discussion of possible differences between the intended target population 
and the sub-population.

For example, suppose the intended target population is the nation’s 
students, and students taking lunch in a college refectory form the available 
sub-population; then the researcher should devise a procedure for random 
sampling of diners from the refectory. Failure to do this introduces bias of 
unknown degree into the findings.

Randomization

It is desirable that the results of an experiment be attributable to no other 
causes than the random effects of sampling fluctuation or to the effects of the 
factors designed into the experiment or to the combined effect of both these. 
In order to ensure that no other factor, known or unknown, could be having 
an influence on the dependent variable, randomization must be used in the 
conduct of the experiment. (Such a factor is known as a confounding factor.)

This means that individual subjects must be assigned at random to the 
different conditions and that random selection of materials, stimuli, inter-
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viewers, times of day, rooms etc. must be used whenever these are not 
prescribed by the design of the experiment or by logistical constraints.

3.4 CONFIDENCE INTERVALS

A mean score is often obtained from a sample of individuals and used as an 
estimate of the mean score in the wider population from which the sample 
was taken. An indication of how good an estimate is provided by the 
sample mean can be provided by the confidence interval.

The confidence interval is a range of values above and below the sample 
mean so constructed as to have a 95% or 99% chance, or probability, of 
containing the true or population value of the mean. In other words the 
confidence interval is a guide to how close the estimate is likely to be to the 
true value. The true value can be conceptualized as the value approached 
by the mean as the sample size increases to include the entire population.

In the context of experiments of the types described in sections 2.1-2.4, 
approximate confidence intervals can be constructed for means obtained 
under experimental conditions in the following way.

Consider the word recall scores from the example in section 2.1. The 
mean number of words recalled by the 10 individuals in the first condition 
is 5.2. Suppose the analysis of variance has obtained a mean square for 
within-groups (see section 4.1) whose value is represented by MS. Then the 
95% confidence interval is

In this formula, n takes the value 10, the number of recall scores that have 
been averaged to obtain the mean value 5.2. The plus provides the upper 
limit above 5.2 and the minus the lower limit below 5.2. The sample mean 
itself, 5.2, is the best estimate of the population or true value.

Identifying the appropriate mean square from the analysis of variance 
needs some skill; however, a rule of thumb is to take the MS with the 
largest d f  (degrees of freedom). It may be called M S within-groups, M S  
error or MS between subjects.

It is often useful to mark the upper and lower 95% confidence limits on 
each bar on a bar chart of means. Some computer programs will do this.

The 99% approximate confidence interval is obtained by substituting 
2.58 for 1.96 in the above formula. (Note: +1.96 and ±2.58 are the values 
of the standardized normal distribution which enclose 95% and 99% of the 
population.)

3.5 SAMPLING FLUCTUATION AND SAMPLING ERROR

(3.1)

Since every individual has unique properties and abilities, each will return 
a unique score on any test or measurement. It therefore follows that the 
mean scores of the groups to which individuals are randomly allocated will
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differ from one another in a random manner. This is what is meant by 
sampling fluctuation. It is also called sampling error.

Sampling fluctuation refers to the changes in value of the mean as 
repeated random samples are drawn from the same population. These 
sample means can be considered as a collection of estimates of the true value. 
Each of them deviates from the true value to a greater or lesser extent. These 
deviations are errors of estimation, hence the name ‘sampling error’.

3.6 STATISTICAL SIGNIFICANCE

If, in an experiment based on a random sample of individuals, differences 
among means are large enough to be judged to be the result of real 
differences among the conditions, then these differences are said to be 
statistically significant.

Equivalently, statistical significance is said to be present if the differences 
found in a sample are large enough to be generalized to the population 
with confidence.

If a difference in means has been declared to be significant a decision 
has been made. Whether the decision has been made that a difference 
in means is or is not significant there is some probability that the deci­
sion is in error. The level of significance is the probability that a differ­
ence in means has been erroneously declared to be significant. Typical 
values for significance levels are 0.05 and 0.01 (corresponding to 
5% and 1% chance of error). Another name for significance level is 
/rvalue.

3.7 FORMULATING DECISION-MAKING AS A 
TEST OF HYPOTHESES

The experiment used as an example in section 2.1 has as its aim the making 
of a decision as to whether any differences among the mean scores of the 
various groups of individuals are due (at least in part) to the effects of the 
different amounts of time pressure they have experienced. In other words, 
the aim is to determine whether there is any effect of the time pressure on 
the recall.

Commonly, researchers ask, ‘Is the effect of the independent variable on 
the dependent variable statistically significant?’.

More concisely, the aim can be stated as being to decide whether the time 
pressure (the i.v.) is having any effect (on the d.v.). This is a ‘yes’ or ‘no’ issue 
which is often formulated in terms of two hypotheses, one of which 
proposes that the i.v. is not having an affect (called the null hypothesis, H 0) 
and the other which proposes that the i.v. is having an effect (called the 
alternative hypothesis, H x):

H0: time pressure does not have an effect on recall
H i. time pressure has an effect on recall
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or, more generally:

H0: the i.v. does not have an effect on the d.v.
Hi\ the i.v. has an effect on the d.v.

or, in other words and omitting mention of the d.v.:

H 0: the factor does not have an effect
H i : the factor has an effect

or, equivalently:

H 0: the conditions have indentical effects
H 1: the conditions have different effects

Note that H 0, the null hypothesis, must refer to the absence of effect of the
i.v. on the d.v., whereas the alternative hypothesis must refer to the opposite 
situation. It is supposed that H 0 is taken to be true until the results of an 
experiment lead to a decision to reject H 0 in favour of H t .

Two further formulations are commonly used, each useful for its refer­
ence to underlying concepts:

H 0: ^ = ^ 2  =  ̂ 3  = ... etc.
H 1: not H 0

where is the mean score in the population after exposure to condition 1, 
and so on. Sampling fluctuation cannot affect the values of /il5 \i2 etc. 
because they are the mean values that would be obtained if the entire 
population was taking part in the experiment. When the entire population 
is included there is no sampling fluctuation.

The formulation of H 0 and H x in terms of means \i2, etc. being either 
identical or not identical is equivalent to saying that the conditions either 
have or do not have identical effects.

Taking this one step further, stating that the population values of the 
means do not differ is equivalent to stating that they have a zero variance. 
Hence, if oceans is the variance of \iu  fi2, p3, etc., the equivalent formulation 
is:

H q .  G  means =  0

Grmeanŝ 0

(where ^  means ‘is not equal to’).

All of the above six equivalent formulations are regularly used by 
practitioners and appear in standard textbooks and journal articles. None 
is more correct than any other.

At the conclusion of the analysis the decision is reported in terms of 
rejection or non-rejection of H 0 at a conventional level of significance or 
accompanied by the computer-calculated p-value. The conventional levels 
of significance are 0.05, 0.01 and 0.001 (i.e. 5%, 1% and 0.1%).
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Examples of reporting the decision

The decision must be accompanied by a statement of the significance level 
or p-value, as in these examples:

H0 was rejected at the 0.05 significance level.
H q was not rejected at the 0.01 level of significance.
H0 was rejected at the 5% level.
H0 was not rejected; p = 0.831.
H0 was rejected; p — 0.003.
H0 was rejected; p<0.01.
H0 was not rejected; p>  0.05.

The meaning of p = 0.831 is that the differences among the means are of 
such a size that deciding to reject H0 would be wrong 83.1 times in 100. 
Likewise, p = 0.003 means that the differences among the means are of such 
a size that deciding to reject H 0 would be wrong 0.3 times in 100. (See 
section 3.6 on statistical significance.) It follows from the p-values in these 
two examples that H 0 should not be rejected in the first but should be 
rejected in the second.

The meaning of p<0.01 is that the decision is to reject H 0 at the 0.01 
level of significance. The meaning of p>  0.05 is that the decision is to not 
reject H0 at the 0.05 level of significance.

Note that the result is never reported in terms of acceptance of H0 or 
rejection of H x.

3.8 POWER

Experiments pose the problem of distinguishing real effects of the condi­
tions from the effects of sampling fluctuation (see section 1.4).

The design of experiments aims to maximize the effect of the conditions on 
the dependent variable relative to the effect of sampling fluctuation. The 
more this is achieved, the more powerful is the experiment.

The analysis of experimental data by analysis of variance provides 
information in a form that enables the researcher to decide whether or 
not there is an effect of the treatment factor or conditions. This is the 
same as deciding that the differences among the means under different 
conditions are statistically significant. As discussed in section 3.6, it is 
possible that the wrong decision is made. Power has a direct bearing on 
the probability of deciding that there is no effect of the conditions when 
in fact there is an effect. This is called the type II error. It can be 
contrasted with the type I error -  deciding that there is an effect of the 
conditions when there is none.

Type II error is likely when the sampling fluctuation is large. This can 
occur when the individual subjects taking part in the experiment are very 
heterogeneous. It can also occur when the sample size is small, since in 
small samples the naturally occurring differences between the subjects may 
be so large as to obscure the effect of the conditions.
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Type II error is also more likely when the conditions being investigated 
have little effect on the individual scores on the dependent variable. This 
can be because the true effects of the conditions are small or because of 
measurement error in the dependent variable.

Formally, power is defined as the probability that there will not be a type 
II error, i.e the probability of correctly deciding that there is an effect of the 
conditions. If power is too low it is not worth carrying out the experiment. 
Conventionally, designers of experiments seek levels of power in excess 
of 0.7.

3.9 SENSITIVITY

Power can be increased indefinitely by increasing the number of individual 
subjects taking part in the experiment. It is useful to look for ways of 
increasing power by changes to the design of the experiment rather than by 
increasing the number of subjects.

Sensitivity is more convenient than power for comparing designs of 
alternative experiments which investigate the same conditions. Sensitivity is 
defined as the number of subjects experiencing each experimental condition 
divided by the variance of scores in the sample. It is the same expression as 
that of which the square root was taken in equation (3.1), except that it is 
the other way up, namely:

. . .  n sensitivity=T7t;MS

Here n is the number of individual subjects experiencing each condition 
and M S is the mean square estimate of variance of individual scores.

Sensitivity, then, increases when n increases and decreases when M S  
increases. Note that MS is a measure of sampling fluctuation. It is often 
known as mean square error or mean square residual.

The link with the confidence interval formula referred to above means 
that as sensitivity reduces, the confidence interval widens, indicating that 
estimates have larger margins of error. Thus sensitivity relates in a direct 
way to precision of estimation.

There is an example of the calculation of sensitivity in Chapter 9.

3.10 EFFICIENCY

Since the sensitivity of any design can be increased indefinitely by increas­
ing the number of subjects, the experimenter usually has to consider 
sensitivity relative to the cost of running the experiment. To serve this end, 
efficiency is defined as follows:

^  . sensitivity
efficiency = ------------

cost
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Costs are usually measured in terms of time and can be expected to include 
the following:

1. Cost of finding subjects
2. Cost of taking subjects through the conditions
3. Cost of setting up conditions
4. Cost of obtaining covariate scores (if available)

The comparison of alternative designs can be carried out in terms of their 
relative efficiency or R.E.:

, . _  . efficiency of design version 1
relative efficiency= — -— — — ®--------- :-----

efficiency of design version 2

The use of relative efficiency depends on the assumption that an 
alternative design is preferred provided it leads to an increase in sensitivity 
which is proportionately greater than the increase in costs.

There is an example of the calculation of relative efficiency in Chapter 9.

3.11 BIAS

Bias is systematic error as opposed to sampling error. Sampling error is the 
tendency of a sample not to mirror the population from which it is drawn 
because of the chance effects of random sampling. The effects of sampling 
error diminish towards zero as the size of the sample is increased. Bias is a 
form of error which does not diminish as the sample size increases.

In a cross-reference to psychometrics, bias is to validity what sampling 
error is to reliability. Bias will arise if the technique for drawing a random 
sample is faulty, or if there is a mismatch between the data and the 
assumptions of the model on which the statistical analysis technique is 
based. Sometimes it is possible to make an adjustment to correct for bias. 
One technique for this is dealt with in Part Two of this book.

3.12 LOGISTICAL CONSTRAINTS

There are always limitations on the amount of environmental and econo­
mic resources, such as rooms, equipment and time, and on the properties of 
experimental subjects, such as motivation, availability and resistance to 
tiredness.

The experiment must be designed to fit within these constraints. De­
cisions to this end resemble decisions aimed at pursuing any project in the 
real world and, like them, become easier with experience.



4 Single-factor independent 
groups design

4.1 INTRODUCTION

A more complete and detailed account of the design introduced in section
2.1 now follows. The design was illustrated in section 2.1 by an investiga­
tion of the effect of time pressure on recall of words read from a list. The 
aim of the experiment was to enable a decision to be made as to whether 
time pressure, the independent variable, caused changes in the number of 
words recalled, the dependent variable.

Section 4.2 sets out the principles of analysis of variance (ANOVA) for 
the single-factor design. It contains an account of the logic of the process 
for making a decision about the possible existence of an effect of time 
pressure on recall.

In section 4.3 the principles presented in section 4.2 are illustrated by 
their application to a new example of the single-factor design. The example 
is concerned with the eating behaviour of gerbils.

Section 4.4 explains the ANOVA summary table.
Section 4.5 presents convenient formulae for hand calculation of the 

analysis. This section may be ignored by those readers preferring to use an 
appropriate computer system.

Finally, in section 4.6 the assumptions which underlie the analysis of the 
single-factor design are identified and discussed. It is shown that a precise 
mathematical model is assumed which relates the independent variable to 
the dependent variable.

4.2 THE PRINCIPLES OF THE ANALYSIS OF VARIANCE

When the null hypothesis is true the various groups of subjects can be seen 
as random samples from the same population. In the example referred to 
previously this is equivalent to the different amounts of time pressure 
having identical effects on the number of words recalled.

Suppose that the population has mean score fi and variance a2. (a2 is the 
between-subjects variance.) Suppose also that the random samples each 
contain n subjects (the sample size of each group is n). This is represented 
as a diagram in Fig. 4.1. In this situation the fundamental property of 
sampling distributions states that if the means are themselves regarded as
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Principles of the analysis of variance ~ 

a group of scores they form a random sample from a population of such 
means whose mean is p. and whose variance (the variance of means 
discussed in section 3.2) is: 

The significance test of the analysis of variance is based on the compari­
son of the estimate of a2 obtained from n times the variance of means, as 
discussed in section 3.2, with the estimate of a2 obtained from the 
individual scores within each group. This latter estimate is formed by 
combining the separate estimates of a2 from each group. Combining 
separate estimates is called pooling. 

The estimate based on the scores within the groups is not affected by the 
differences among the means of the groups and so is independent of the 
truth or falsity of H 0 • 

The other estimate, however, is affected by the truth or falsity of H 0 , for if 
H 0 is false the group means will exhibit an additional degree of scatter or 
variation due to the differential effects of the conditions. It will be an 
overestimation of the between-subjects variance. This leads to the result: 

Estimate of variance 
based on differences 
among group means 

if H 0 is true, or 

Estimate of variance 
based on scores 
within-groups 
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Estimate of variance > 
based on differences 
among group means 

if H 0 is false. 

Estimate of variance 
based on scores 
within-groups 

The ratio of these two variance estimates is called F: 

F variance estimated between group means 
variance estimated from scores within-groups 

F is the statistic which is calculated as part of the ANOV A technique. If 
H 0 is true, F is expected to have the value 1; if H 0 is false, F is expected to 
exceed 1. 

It is not expected that the value of F from any single realization of the 
experiment will be exactly 1, even if H 0 is true. F is subject to sampling 
fluctuation. Mathematical probability theory has made possible the calcu­
lation of values of F (known as 'critical values') which are exceeded with 
probability 0.05 and 0.01 when H 0 is true. 

The critical value of F is the upper limit which will be exceeded in only 
5% or 1% of realizations of the experiment with H 0 true. IfF exceeds the 
critical value the decision is made to reject H 0 in favour of H 1 . The critical 
values for 5% and 1% significance levels of the sampling distribution ofF 
are set out in tables in Appendix F.2. The critical value for 5% is displayed 
on a diagram of the sampling distribution of F in Fig. 4.2. (The critical 
value ofF depends on degrees of freedom- see sections 3.1 and 4.3.1.) 

Fig. 4.2 Sampling distribution of F. 

4.3 ANALYSIS OF VARIANCE AND SIGNIFICANCE TEST 

4.3.1 Numerical example 

An experiment aimed to investigate the effect of interrupting gerbils' feeds 
on their decisions to return to the same feeding site. Thus the conditions 
factor was the degree of interruption, with the three groups each being 
treated to one of three different degrees of interruption (none, partial or 
complete). The response or dependent variable was the percentage of times 
each gerbil subsequently returned (returns) to the original feeding site in the 
next 24 hours. 

Twenty-four gerbils, randomly selected from a defined population, were 
randomly allocated to the three conditions. Thus there were three groups 
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of 8 gerbils (fc, the number of groups =  3; n, the number of gerbils per 
group = 8). The null and alternative hypotheses, expressed in words are:

H0 : the degree of interruption does not have an effect on returns
H x: the degree of interruption has an effect on returns

The results were as set out in Table 4.1. The mean percentage of times the 
gerbils returned to the original feeding site according to condition groups 
are set out in Table 4.2 and displayed as a bar chart in Fig. 4.3.

Table 4.1 Percentage returns by feeding condition for 
24 gerbils

Factor: Degree of interruption

Levels: None Partial Complete

63 61 38
53 59 44
53 55 47
38 75 38
9 75 59

47 63 41
28 53 75
19 44 34

Table 4.2 Mean percentage returns

Degree of Mean
interruption

None 38.75
Partial 60.63
Complete 47.00

Overall mean: 48.79
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Fig. 4.3 Effect of interruption on the return to original feeding site.
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4.3.2 Algebraic formulations of variance estimates

The between-groups variance -  symbolic form
One of the two variance estimates referred to above is that obtained from 
the means of the k groups. If the group means are represented by X l9 X 2, 
X 3, ..., X k9 and X  represents their overall mean (mean of means) then the 
deviation of the j  th mean from the overall mean is (Xj — X). The sum of 
squares of all such deviations is set out as

SS = Z { X j-X )2
summed over all groups. It is an SS which, when divided by the appropriate 
degrees of freedom, d f  estimates <x2/n as discussed in sections 3.2 and 4.2. 
When multiplied by n, supposing there are n scores per group, it provides 
an SS which when divided by the appropriate degrees of freedom estimates
o2. It has the form:

SS = riL(Xj—X)2

This is the S S  between-groups, which can be written SSbetween- It has k — 1 
degrees of freedom. Hence the between-groups variance estimate (known as
f̂^between) tS

r iL {X j-X )2
MS,between ' fc-1

Numerical illustration
Following the calculations of section 3.2 as formulated above, this gives, for 
the gerbil experiment:

SS = 8[(38.75 -  48.79)2 + (60.63 -  48.79)2 + (47.00 -  48.79)2 ]
= 8(244.19)
= 1953

This is the SS between-groups. When divided by the degrees of freedom, 
fc— 1, in this case 2, it gives 976 as the estimate of the variance of individual 
scores known as the Mean Square between-groups.

The within-groups variance -  symbolic form
Also referred to in section 4.2 is the pooled within-groups variance 
estimate. Suppose the scores in the jth  group are represented by 
X 3j, ..., X nj, so that the typical score is X ij9 that is, the score of the /th 
gerbil in the j  th group. This means that, in the gerbil example, I n , is 63, 
2f41 is 38, X l2 is 61 and X 83 is 34. Suppose, as before, that Xj is the mean 
of the scores in the j  th group, so that X^ is 38.75, etc.

Then a typical deviation of an individual score from the appropriate 
group mean is (X ij—Xj) and the SS pooled from all such deviations is

SS = E I(X i7 - X ; ) 2

summed over all scores i and groups j. This is the S S  within-groups, which 
can be written S S within- It has k(n — 1) degrees of freedom. It follows that the
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within-groups variance (known as MSwithin) is estimated by 

asc J■M- ̂ within k(n— 1)

Numerical illustration
The within-groups SS is obtained by summing the squares of the deviations 
of the scores each from their own group means. The deviations from the 
group mean of the first two scores are: (63 — 38.75) and (53 — 38.75). There 
are three groups of eight gerbils, each contributing one deviation. The sum 
of squares of all 24 such deviations is 4545.

SS = [(63 -  38.75)2 + (53 -  38.75)2 +. . .  +  (34 -  47.00)2 ]
=  4545

Only the first two and the last terms are shown.
This is the SS within-groups. When divided by the degrees of freedom, 

k(n— 1), in this case 21, it gives 216 as the estimate of the variance of 
individual scores known as the mean square within-groups.

4.4 THE SUMMARY TABLE AND THE DECOMPOSITION 
OF THE TOTAL SS

4.4.1 Symbolic form

The sum of squared deviations, which is known as SS for short, as 
described above, is a very convenient measure of variation on which to base 
an analysis of the results of an experiment. This is because of the existence 
of the decomposition of SS.

Before the decomposition of SS can be fully appreciated, one further SS 
formulation is required. It is the SS obtained by supposing that all scores 
from the k groups belong to a single group containing nk scores. The SS 
obtained from these nk scores is called SStotal.

The analysis is based on the algebraic relationship between SStotal, 
SSbetween and ^within- The relationship amounts to a decomposition of the 
total SS into two components as follows:

^ h o t a l  == ^ 'b e tw e e n  4 “ ^ ^ w ith in

Thus when variation is measured in terms of SS, a decomposition of the 
total variation is provided into a component due to differences between the 
means of the groups and a component due to differences between the scores 
within the groups.

The ANOVA summary table provides a standard way of displaying this 
decomposition of total variation together with the variance estimates and 
the F-statistic described in section 4.2. The variance estimates are referred 
to as mean squares in the table (abbreviated to MS). There is an equivalent 
decomposition of the total degrees of freedom into the sum of the between- 
and within-groups df.
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Each of the SS, when divided by its degrees of freedom, provides a 
variance estimate or mean square.

If H 0 is true, all three are estimates of <x2, the population value of the 
between-subjects variance of the scores.

If H 0 is not true, the within-groups mean square continues to estimate 
a2, but the between-groups mean square estimates

O  +  ft(O'means)

where oceans is the variance of the population values of the group means 
described in sections 3.2 and 4.2.

Thus the ratio of the between- to the within-groups mean squares, 
known as the F ratio, is dependent on the size of o^eans- The larger is cr2eans, 
the larger is F.

When H0 is true the means of the groups in the population are identical 
and (Tmeans is zero and F is expected to equal 1.0.

4.4.2 Numerical illustration of summary table

A numerical example taken from the gerbil experiment will assist the 
explanation. First, the SStotai is calculated. In practice this is rarely needed 
except as a check on other calculations.

The deviations from the overall mean of the first two scores are (63—48.79) 
and (53—48.79), and the sum of squares of all 24 such deviations is 6498, with 
23 degrees of freedom (the degrees of freedom for SStotal are always one fewer 
than the number of measurements in the experiment).

Thus 6498 is the total SS obtained by disregarding the group member­
ship of the gerbils and supposing them to belong to a single group and to 
have experienced identical conditions.

It is now possible to show the decomposition of SS for this example:

‘̂ ‘S'total ^^betw een 4 " SS within 

6498 = 1953 + 4545

There is an equivalent decomposition of d f s. Note that the formulae for 
degrees of freedom are presented in section 4.5. The complete analysis is 
displayed in a summary table as in Table 4.3. The critical value of F on 2 
and 21 degrees of freedom at the 5% level of significance is 3.47. It is shown 
on a graph of the distribution of F in Fig. 4.4. The 2 and 21 degrees of 
freedom are referred to as the numerator and denominator degrees of 
freedom since they are the d f s of the MSs which form the numerator and

Table 4.3 Summary table for analysis of variance for the gerbil experiment

Source of SS d f Mean square F
variation

Between-groups 1953 2 976 4.51
Within-groups 4545 21 216

Total 6498 23
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3.47 4.51

0 1 2 3 4 5

Fig. 4.4 Line graph for F.

denominator of the calculation of F. When looking up the critical F in the 
tables, the numerator and denominator d f  s determine the column and row 
respectively. (Note that it is safe to assume that the denominator d f is 
larger than the numerator d f  for this design.)

Therefore, since the value of F found from analysis of the results of the 
experiment exceeds the critical F value, the decision is made to reject H0 at 
the 0.05 level of significance.

Note that the variance estimate obtained between-groups is 4.5 times the 
size of the within-groups estimate. This intuitively suggests that the 
variation among the group means is far greater than is likely to be obtained 
due to the chance effects of the random sampling. The intuition is 
confirmed by the significance test. The variance of the population means 
can be estimated using the formula in section 4.4.1: (976 —216) = 760 
estimates n times oceans* Hence

ffmeans =  760/8 
=  95

This value, 95, is a measure of the size of the effect of the factor on the 
dependent variable. A more usual way of describing the size of the effect is 
set out in section 4.4.3.

4.4.3 Size of effect

The size of the effect of a factor can be described in terms of the variance of 
the means in the various conditions as above. In this approach oceans = 95.

An easier approach is to express the SS due to the conditions factor as a 
proportion of the SSt0ta]. In the current example this leads to the fraction 
1953/6498, indicating that 30% of the variation in gerbils’ scores is 
explained by the differences among conditions.

4.5 COMPUTATIONAL FORMULAE FOR DEGREES OF 
FREEDOM AND SSs

The method of calculation used in the above example illustrates the 
principles of ANOVA, but is subject to a serious build-up of rounding 
errors and is slow. A better method involves calculating the sums and sums 
of squares of the scores in each group. That is, where n is the number of 
individuals in each group and N  is nk, the total number of individuals 
across all groups, we calculate:

(XZ.x)2 , (XZi2)2 , (XZi3)2 (XZa + X Z i2+ X Z i3)2
*̂ *̂ between ™ AT
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_(310)2 (485)2 (376)2 (310+485 +  376)2 
8 +  8 +  8 24

= 1953 

as before, and

v v v 2  (ZXn +-LXi2+-LXi3)2
total — ij —

= 63 633-57135 
= 6498

as before. SSwithin is just 6498 — 1953 = 4545.

Degrees o f freedom

For the total SS, the d f  is always one less the total number of measure­
ments of the dependent variable: d f = N  — 1.

For the between-groups SS the d f  is always one less than the number of 
groups: df= k — 1.

For the within-groups SS the d f  is always (the number of groups) x (one 
less than the number of measurements per group): d f = k(n— 1).

4.6 UNDERLYING MODEL AND ASSUMPTIONS FOR 
TESTS OF SIGNIFICANCE

Since the effect of a factor has been defined in terms of differences between 
means there is an implicit assumption that an additive effects model is 
being used. That is:

score = overall mean 4- conditions effect

The conditions must be conceptualized as having uniform incremental or 
decremental effects on the subjects’ scores. In the numerical example of 
section 4.3.1 this model is estimated as:

Expected score =  overall mean -I- conditions effect 
for a randomly 
sampled subject

= 48.79

The conditions effect is —10.04 for the first condition, +11.84 for the 
second and so on. These values are the deviations of the group means from 
the overall mean.

When differences are the focus of interest then sums of squared deviations 
are an obvious statistic for the measurement of the size of a collection of 
differences. This follows since differences are deviations. Variances are 
a measure of the average size of the squares of deviations: hence mean square.
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The various concepts that make up analysis of variance are interdepen­
dent and follow from a particular conceptualization of the conditions effect.

The test of significance depends for its validity on the sampling design of 
the experiment, on the additive nature of the conditions effect and on the 
scores having a normal distribution in the population. A condition which 
affected individuals differently depending on their score levels before 
experiencing the condition is not permissible. (An example of such a 
condition would be a form of remedial reading tuition which only benefits 
the weakest readers.)

The combined effect of these three requirements is that the scores in each 
of the conditions groups is assumed to be a random sample from a 
population of scores with a normal distribution with a variance identical to 
that in all other conditions groups. It is only in the means of their parent 
populations that the groups can differ and these differences must be due 
only to the effects of the conditions.

4.7 CONCEPT LINKAGE FOR ANALYSIS OF VARIANCE

Figure 4.5 represents the links between the concepts used to relate the 
differences between individuals and between groups to variances and the 
test of significance.

Differences between individuals 
Differences between groups

SSs----------------- Variance
estimates

MSs

Decomposition Decomposition ANOVA
of an individual’s of variance o f-----------summary
response all individuals table

i
Ftest

Fig. 4.5 Concept linkage diagram for analysis of variance.

The differences are reformed into deviations from an overall mean 
(section 3.2). In one development these are used in the additive model 
(section 4.6). This shows how an individual subject’s response (measured as 
the dependent variable) is represented as the sum of components due to the 
effects of the conditions and an overall mean.

In a parallel development the deviations are reformed into SSs, their 
weighted sums of squares, and are used in the decomposition of variance 
(sections 4.3.2 and 4.4).

Deviations

Additive 
model for 
individual 
response



36 Single-factor independent groups design

The SSs are also used to obtain the variance estimates, which are known 
as mean squares, or MSs. The MSs lead directly to the F-test of significance 
for the differences between means of groups in the experiment conditions 
(section 4.2).

4.8 EXERCISES

4.1 The result of running a single-factor between-subjects experiment with 
three conditions and 10 subjects per group was expressed as deviations 
from the overall mean thus:

effect of conditions = (0.75, —1.9, 1.15)
(a) If the overall mean score on the dependent variable was 7.88, use the 

model on which the ANOVA is based in the form (section 4.6):
expected score =  overall mean + conditions effect

to calculate the score predicted by the model for an individual in the 
third condition group.

(b) Calculate SSbetween by using the following formula from section 4.3.2:

SSbetween =(No. of subjects per group) (sum of squared deviations of 
group means from overall mean)

= riL {X j-X )2

where n is the number of subjects per group, X j is mean of group j  and 
X  is the overall mean.

(c) Sketch the bar chart of mean scores of the three groups.

4.2 Take the data for the gerbil example in Table 4.1 and carry out an 
analysis using an appropriate computer package. Obtain the following:

(a) The mean scores in the three conditions.
(b) A graphical display of the means in (a) as a bar chart or equivalent.
(c) An analysis of variance summary table with p-value or some equivalent 

indication of significance.

Compare your results with those obtained in section 4.4. Are you clear 
what the decision is about H07 Reject or not?

4.3 Rats were randomly allocated to one of the following three conditions:

no experience of novel food 
smell of novel food
contact with demonstrator rat used to novel food

The dependent variable was the amount of the novel food eaten in grammes.
There were twenty rats in each group. The mean scores in the respective 

groups were:

0.255
0.216
0.365
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The SSs were:

Between: 0.2389 
Within: 4.3403

(a) Express the results as a bar chart of group means.
(b) Obtain the size of the conditions effect as a percentage of the total SS.
(c) Using the rules for degrees of freedom (section 4.5):

d f between ~  k  1 

d f within 1 )

where k is the number of groups and n is the number of subjects per 
group, construct the complete ANOVA table, calculate F and complete 
the test of significance.

(d) Set out the two estimates of individual error variance, <r2, one derived 
from differences among group means, the other from differences among 
individual scores within groups (sections 4.2 and 4.3.2). Comment on 
their relative sizes in relation to the result in (c).



Single-factor repeated 
measures design

5.1 INTRODUCTION

A more complete and detailed account of the design introduced in section
2.2 now follows.

The design was illustrated in section 2.2 by an experiment on the 
interference between functions in the same or different hemispheres of the 
brain. Four randomly sampled individuals took part. The dependent 
variable, on which all four subjects were measured three times, was the 
length of time they could balance a dowel rod on the index finger of the 
left hand. Measurements were made, in succession, while subjects were 
silent, speaking or humming. The scores are set out in Table 2.1.

The repeated measures design differs from the independent groups design 
in that all subjects are measured under all conditions instead of being 
allocated into separate groups, each to be measured under only one 
condition.

Section 5.2 deals with the influences on the score obtained by a particular 
individual subject under a particular condition. Sampling fluctuation is 
shown to influence the results in a more complicated way in this design.

Section 5.3 sets out the principles of analysis of variance for the 
single-factor repeated measures design. Much the same principles apply as 
in the independent groups design.

The principles presented in section 5.3 are illustrated in section 5.4 by 
their application to the analysis of the example referred to above.

Section 5.5 presents convenient formulae for hand calculation of the 
analysis. This section may be ignored by those readers preferring to use an 
appropriate computer system.

Finally, in section 5.6 the assumptions which underlie the analysis of this 
design are identified and discussed. It is shown that a precise mathematical 
model is assumed which relates the independent variable to the dependent 
variable.

5.2 VARIATION PRESENT IN THE REPEATED 
MEASURES DESIGN

Figure 5.1 represents, using hypothetical values, the sampling and measure­
ment aspects of the dowel balancing experiment. A, B and C are three
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occasions, randomly selected, at which subjects were tested in dowel 
balancing. It is supposed that the three conditons, silent, speaking and 
humming, have identical effects on balancing times and so can be arbitrarily 
represented by A, B and C. In other words, H0 is supposed true in Fig. 5.1

There are two stages of sampling. Each creates a source of sampling 
fluctuation which has consequences for the analysis and interpretation of 
the results of the experiment.

The first stage of sampling (illustrated in Fig. 5.1) is the random selection 
of individual subjects from the defined population. For the particular 
dependent variable used in the experiment, balancing times, the mean score 
in the population is represented by /i. The differences among individuals are 
represented in the population by the variance <7sUbjects. This variance 
influences the range of balancing times likely to be obtained in the 
experiment. It is referred to as subjects variance or as between-subjects 
variance.

Four subjects are selected. Each has, thanks to inherited and acquired 
characteristics, a unique balancing ability and corresponding true balanc­
ing time. This true balancing time for each subject is represented in the 
figure by ^  for the first subject, \i2 for the second and so on.

The second stage of sampling is the obtaining of the three measure­
ments for each subject. Since H 0 is supposed true, the conditions are 
having no effect. Therefore the three measurements (A, B and C) should be 
seen as a random sample of three from the supposedly infinite available 
population of occasions on which measurements could be provided by 
each subject.

In Fig. 5.1 the values of three hypothetical measures for each subject are 
shown plotted on line graphs on which the balancing time is represented by 
the vertical axis.

Since H 0 is supposed true for the purposes of this discussion, the three 
measurements are obtained under identical conditions. Each of them is an 
estimate of the true balancing time for the subject. They differ because of 
the error of measurement and instability or unreliability of the human 
subject.

The variation shown by successive measurements of balancing time on an
individual subject is referred to as reliability variance. It is represented by

2 2 
^reliability OIT (7 r .

In the event that H 0 is not true, the differences between the conditions 
under which the three measurements are obtained act as another influence 
on the values of the balancing times.

5.3 THE PRINCIPLES OF THE ANALYSIS OF VARIANCE

The same general idea applies here as in section 4.2 for the independent 
groups design. That is, two independent sets of deviations estimate an 
underlying source of variation, and one only of the estimates, the between- 
conditions estimate, is inflated if H 0 is not true. The underlying source of 
variation is the reliability variance introduced in section 5.2.
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The reliability variance can be estimated from the amount of varia­
tion shown by individual subjects from measurement to measurement 
not otherwise accounted for. This estimate is not affected by any effect of the 
conditions if an arithmetic adjustment is carried out before the reliability 
variance is estimated. The adjustment removes any effect of the conditions.

The reliability variance can also be estimated from the between-condi- 
tions variance. This is the variance among the mean scores in the various 
conditions, n times the between-conditions variance estimates the reliability 
variance (n is the number of subjects in the group). This estimate is inflated 
by any effects the conditions might be having and is directly comparable to 
the between-groups variance in the independent groups design.

As in the independent groups design, comparison of the estimates of the 
reliability variance from these two sources serves as the basis of the test of 
significance of H0. It follows that:

Estimate of variance based = Estimate of variance based on
on variation among condition variation within-subjects and
means within-conditions

if H 0 is true, or

Estimate of variance based > Estimate of variance based on
on variation among condition variation within-subjects and
means within-conditions

if H0 is false.
The ratio of these two variances is called F and leads to the same test of 

significance as that discussed in section 4.2:

variance estimated between condition means
f —--------------------------------------------------------------------------- — — — —-----

variance estimated within-subjects and within-conditions

F is the statistic which is calculated as part of the ANOVA technique. If 
H0 is true, F is expected to have the value 1; if H 0 is false, F is expected to 
exceed 1.

It is not expected that the value of F from any single realization of the 
experiment will be exactly 1, even if H0 is true. F is subject to sampling 
fluctuation. Further discussion of this is found in section 4.2.

5.4 ANALYSIS OF VARIANCE AND SIGNIFICANCE TEST

5.4.1 Numerical example

The numerical example is based on the experiment described in section 2.2. 
The aim is to test the hypothesis that the three conditions (silence, speaking 
and humming), have identical effects on the length of time a subject 
balances a dowel rod on the index finger of the left hand.

This is the null hypothesis H0. It is tested against the alternative 
hypothesis H x which states the opposite, namely that there are differences 
among the three conditions in their effects on the balancing times.
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To simplify the presentation of the calculations, fictitious data has been 
substituted for the real data shown in section 2.2: see Table 5.1.

Table 5.1 Balancing times under three conditions

Silent Speaking Humming Means

Balancing Subject 1 8 2 2 4
times Subject 2 11 8 11 10
(seconds) Subject 3 9 6 3 6

Subject 4 12 8 4 8

Means 10

5.4.2 Reliability variance estimated within-subjects

The variation among the three scores obtained for a particular subject is 
caused by imperfect reliability augmented by any effects of the conditions.

For example, the values 8, 2 and 2 obtained by the first subject reflect 
imperfect reliability of that subject together with error of a random nature 
inherent to the measuring process. Any differences between the effects of the 
three conditions is also reflected in the values 8, 2 and 2.

The effect of the conditions is estimated by the deviations among the 
condition means 10, 6 and 5. This is expressed as the deviations of the 
means from the overall mean, 7:

Effect of conditions = {(10—7), (6 — 7), (5 — 7)}
= {3, - 1 ,  -2 }

The effect of conditions is removed from the balancing times in Table 5.1 
by literally subtracting 3 from all times in the silent condition, — 1 from all 
times in the speaking condition and —2 from all times in the humming 
condition. The result is set out in Table 5.2. Note that the mean balancing 
times for each subject have not been affected by the removal of the 
estimated conditions effect. By contrast, the condition means have changed 
to identical values, 7, to reflect the absence of conditions effect in the data.

Table 5.2 Balancing times after removal of effects of conditions

Silent Speaking Humming Means

Balancing Subject 1 5 3 4 4
times Subject 2 8 9 13 10
(seconds) Subject 3 6 7 5 6

Subject 4 9 9 6 8

Means 7 7 7 7

The remaining variation among the times for each subject represents 
reliability variation alone.

Consider the first subject. The variations among 5, 3 and 4 expressed as 
deviations from the subject’s mean are

Reliability deviations for subject 1=(1, —1, 0)
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The complete set of deviations for all four subjects is set out in Table 5.3. 
The size of these deviations is a measure of the amount of unreliability in 
the measurement of balancing times.

They relate to the SSreliability in the obvious way:

SSreliabiiity =  {(l)2 +  (— l)2 H-----h (l)2 +  (— 2)2}
= 24

Table 5.3 Deviations within subject and 
within conditions

Subject 1 1 —1 0
Subject 2 -  2 — 1 3
Subject 3 0 1 - 1
Subject 4 1 1 —2

Noting that every row and column must add to zero it is evident that 
only six of the deviations in Table 5.3 can be independently determined. 
The values of the remaining six are determined by the row and column 
totals. This means that there are six degrees of freedom. The general rule is:

^/reliability^-
Note that k is the number of conditions and n is the number of subjects. 
Hence, for the balancing time example,

d / = ( 3 - l ) ( 4 - l )
=  6

The same value was obtained previously by reasoning from basic prin­
ciples.

As seen in section 3.1, the estimate of a variance is obtained as the result 
of dividing the SS by the appropriate d f This gives 24/6 = 4 as the mean 
square, which estimates the reliability variance and which cannot be 
affected by any effect of the conditions.

5.4.3 Reliability variance estimated between conditions

This estimate is obtained from the differences among the mean scores in the 
various conditions. Thus in this example it is based on the amount of 
difference among the means 10, 6 and 5.

It is equivalent to the between-groups variance estimate for the indepen­
dent groups design described in section 4.2 and is calculated by the formula 
set out in that section or, equivalently, in section 3.2.

The deviations of the means from the overall mean are (10 — 7), (6 — 7) 
and (5 — 7), that is, 3 , - 1  and —2.

The SS between-conditions is obtained as n times the sum of the squares 
of these deviations, where n is the number of subjects:

SS = 4{(3)2 + ( —1)2 + ( —2)2} 
=4{14}
=  56
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The between-conditions variance estimate has k — 1 degrees of freedom 
where k is the number of conditions; in this example k = 3, d f = 2.

As seen in section 3.1 the estimate of a variance is obtained as the result 
of dividing the SS by the appropriate d f  This gives 56/2 = 28 as the mean 
square, which estimates the reliability variance augmented by any effects of 
the conditions which may exist. If H 0 is true and the conditions have 
identical effects this M S estimates the reliability variance. Hence the same 
logic applies as in the independent groups design.

The standard F-test of significance may now be carried out:

j p  ^ f^betw een-conditions 2 8  ^

M  S reliability 4

This must be compared with the critical value of F based on 2 and 6 
degrees of freedom. The critical values of F  are 5.14 and 10.9 at the 5% and 
1% significance levels, respectively. Since 7 exceeds 5.14, the decision is to 
reject H 0 at the 5% level. The conclusion follows that the conditions do 
affect balancing times.

5.4.4 The subjects-by-conditions interaction

The conventional approach to analysis of this design refers to reliability 
variance as subjects-by-conditions interaction. The identical numerical 
result is obtained. However, since the subjects-by-conditions interaction 
cannot be estimated separately from measurement error unless each subject 
is measured at least twice in each condition it is not a particularly helpful 
approach in this design.

5.4.5 The summary table and size of effect

The summary table

The complete decomposition of the variation in the scores is usually 
presented in an ANOVA summary table. For the numerical example above 
this takes the form of Table 5.4. Of the sums of squares in this table, only 
the between-subjects one was not calculated in sections 5.4.2 and 5.4.3. It is 
obtained as in section 3.2 as the sum of squares of the subjects-effect 
deviations multiplied by k, the number of conditions. The multiplying 
factor k arises because each subject-effect deviation can be seen as the mean 
of three deviations arising each under one of the three conditions.

Table 5.4 Summary table for analysis of variance

Source of variation SS df MS F

Within-subjects:
Conditions 56 2 28 7.0
Reliability 24 6 4

Between-subjects: 60 3 20

Total 140 11
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The mean scores obtained by the four subjects are 4, 10, 6 and 
8. Expressed as deviations (subject-effect deviations) these are (4 — 7), 
(10—7), (6 — 7) and (8 — 7), that is, —3, 3, —1 and 1. These are squared, 
added and multiplied by k to give the SS, which estimates the variation 
due to subjects’ differences, represented by <TsUbjects in Fig. 5.1:

SS subjects = 3[( -  3)2 + (3)2+ ( —1)2 + (1)2]
= 60

The degrees of freedom for subjects is (n— 1), in this case 3. Hence the 
estimate of (T2ubjects is 60/3 =  20.

Note that the ANOVA summary table is in two distinct sections, the 
within-subjects part containing estimates of the reliability variance and the 
between-subjects part containing an estimate of the subjects variance.

The size of effect

The size of the effect of the conditions factor can be reported as the 
proportion it explains of the total within-subjects SS. In the example above 
the value is

56 =70%
56 + 24

The rationale for expressing the SS for conditions as a proportion of the 
total SSwithin, rather than as a proportion of the overall total SS, is that 
conditions contributes only to the within part of the overall total SS.

5.5 COMPUTATIONAL FORMULAE FOR SS AND DEGREES OF 
FREEDOM

If hand calculation is required, the fastest formulae are as follows: 

cc (Cond.l total)2 t (Cond.2 total)2 (
conditions — f" "n n

(Cond.fc total)2 (Overall total)2 
n nk

(Subj.l total)2 (Subj.2 total)2
^^subiects— » 4"“■'subjects “ ^  i ^

(Subj.n total)2 (Overall total)2

SStotal = Z IX 2-

k nk

(Overall total)2 
nk

where k is the number of conditions, n is the number of subjects, Cond. 1 total 
is the total of scores, in condition 1, Subj. 1 total is the total of scores for
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subject 1 etc., and EZX2 is the sum of squares of every measurement over all
conditions and subjects.

The SSreiiabiiity is found by subtraction.
The degrees of freedom follow the usual rules:

1. For SStotai the d f  is one less than the total number of measurements: 
d f= (n k -1)

2. For SSconditions the df  is one less than the number of levels of the 
conditions factor: d f = (k — 1).

3. For SSSubjects the d f is one less than the number of subjects: d f = (n — 1).
4. Finally, for S S reliabiiity the d f  is (df for subjects) x (df for condi­

tions) = (n— l)(k— 1).

5.6 UNDERLYING MODEL AND ASSUMPTIONS FOR 
TESTS OF SIGNIFICANCE

Underlying model

As for the independent groups ANOVA, the conceptualization of an effect in 
terms of deviations implies an underlying additive model. This is set out as:

expected score =  overall mean + subject effect + conditions effect

For the numerical example above the model appears as:

Expected 
score for
a randomly = overall mean + subject effect +  conditions effect 
sampled

The three terms in the above model, when appropriately added, give the
value of the score expected supposing there to be no error.

Assumptions for validity of the F-test

1. The subjects are supposed randomly sampled from a defined popula­
tion.

2. The reliability errors (which are the set of deviations illustrated in Table 
5.3) are supposed randomly sampled from a population which has a 
normal distribution, mean zero and variance equability

3. It is required that in the population the scores on the dependent 
variable follow a normal distribution with variance ŝubjects-

4. Additivity is assumed. See section 4.6 for discussion of additivity.

subject

= 7
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5.7 EXERCISES

5.1 Five randomly sampled migraine sufferers took part in an investigation 
of two rival medications. The dependent variable was the number of hours 
of migraine experienced in one week. Four observations were obtained on 
each subject -  two baseline non-medication weeks followed by one week on 
medication 1 and one on medication 2.

The results were as follows:

Conditions

Subject Base Medication Subject Conditions Overall
means means mean

1 2  1 2

1 21 22 8 6 14.25 22.60
2 20 19 10 4 13.25 22.60
3 17 15 5 4 10.25 9.80
4 25 30 13 12 20.00 6.80
5 30 27 13 8 19.50

(a) Display the conditions effect as a bar chart of mean scores. Which is the 
more effective medication?

(b) Display the con litions effects (as raw scores) unique to each subject 
superimposed on a single graph. Which subject appears to have 
benefited least from treatment?

(c) Obtain the conditions effect as deviations from the overall mean and 
hence use the formula:

SSconditions = (no. of measurements at each cond.)(t\ + 1\ + 1\ H— )

(where tu t2, etc. are the deviations) to obtain the SS for conditions. 
(This formula is set out at the between-conditions variance estimate in 
section 5.4.3.)

(d) The three following tables are the migraine data modified by removing 
one of: the subjects effect; the conditions effect; both the subjects and 
conditions effects (but not necessarily in that order). Identify which is 
which. (Hint: obtain the subject means and the conditions means for 
each table; refer to section 5.4.2.)

Table 1
15.05 16.05 14.85 15.85
15.05 14.05 17.85 14.85
15.05 13.05 15.85 17.85
13.30 18.30 14.10 16.10
18.80 15.80 14.60 12.60
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Table 2
13.85 14.85 13.65 14.65
12.85 11.85 15.65 12.65
9.85 7.85 10.65 12.65

17.85 22.85 18.65 20.65
22.85 19.85 18.65 16.65

Table 3
22.20 23.20 9.20 7.20
22.20 21.20 12.20 6.20
22.20 20.20 10.20 9.20
20.45 25.45 8.45 7.45
25.95 22.95 8.95 3.95

(e) When the subjects effect, conditions effect and overall mean are removed 
from the above raw data the result is:

Conditions

-0.40 0.60 -0 .60 0.40
12 . o -0.40 -1 .40 2.40 -0 .60
& -0.40 -2 .40 0.40 2.40
eg ■-2.15 2.85 -1 .35 0.65

3.35 0.35 -0 .85 -2 .85

These deviations represent the unreliability of the measurements (sec­
tion 5.4.2). They are the deviations from the values expected on the 
basis of the conditions and subjects effects alone.

^^reliability =  ( t  1 +  *2 +  *3 H------ )

is the appropriate formula. (This formula is set out as the within- 
conditions variance estimate in section 5.4.3.)

Use it to calculate SSreiiabmty
(f) Complete the ANOVA summary table for this experiment using 

the above SS calculations and taking the rules for dfs from section
5.5.

Complete the test of significance by deciding whether to reject H 0.
(g) Carry out the analysis of the above data using an appropriate com­

puter package. Obtain:

(i) The mean scores in the four conditions.
(ii) A graphical display of the means in (i) as a bar chart or equivalent.
(iii) An analysis of variance summary table with p-value or equivalent 

indication of statistical significance.
Check that you are able to interpret the result of this analysis of 

variance.

(h) Identify from the analysis in (f) or (g) the estimate of the variance of the 
population of which the deviations tabulated in (e) are a sample.

(i) Does SSsubjects have any role in this analysis?
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5.2 An experiment was carried out to compare the effects of three drugs on 
performance. The measure of performance was mean reaction time on a 
series of standardized tasks.

The five subjects who took part were a random sample from the relevant 
population. Each subject was measured under the influence of each of the 
drugs and a drug-free control condition.

The mean reaction times recorded by the experimenter were (Winer et al., 
1991):

Subject Drug 1 Drug 2 Drug 3 Control

1 30 28 16 34
2 14 18 10 22
3 24 20 18 30
4 38 34 20 44
5 26 28 14 30

Subject means: 27.0, 16.0, 23.0, 34.0, 24.5
Condition means: 26.4, 25.6, 15.6, 32.0
Overall mean: 24.9

(a) Plot the conditions effects unique to the first two subjects on the same 
graph. Do they show a consistent pattern in the effects of the condi­
tions? (Hint: use raw scores for the plot.)

(b) Obtain the conditions effects unique to each of the first two subjects as 
deviations from the subjects9 means.

Using intuition, which of these two subjects would you say is most 
affected by the conditions?

(c) Express the overall condition and subjects effects as deviations from 
the appropriate mean and hence calculate their SSs. (The between- 
conditions and between-subjects SSs are set out in sections 5.4.3 and
5.4.5.)

(d) If SSreiiabiiity = 112.8, complete the ANOVA summary table and the test 
of hypothesis for the conditions effect (sections 5.4.3 and 5.4.5.)

(e) What is the size of the conditions effect SS expressed as a proportion of 
the appropriate total?

(f) Carry out the analysis of the above data using an appropriate com­
puter package. Obtain:

(i) The mean scores in the four conditions.
(ii) A graphical display of the means in (i) as a bar chart or equivalent.
(iii) An analysis of variance summary table with p-value or equivalent 

indication of statistical significance.
Check that you are able to interpret the result of this analysis of 

variance.



6 Two-factor independent 
groups design

6.1 INTRODUCTION

A more complete and detailed account of the design introduced in section
2.3 now follows in section 6.2. A new example is introduced which will serve 
to illustrate all aspects of the two-factor design. Questions posed in the 
language of the users of the findings of the experiment are set out at the 
start of section 6.2.3. The results are interpreted in the light of the mean 
scores obtained under experimental conditions and linked to the formal 
language of hypothesis testing.

6.2 EXAMPLE OF TWO-FACTOR DESIGN

Consider, as an example, an experiment from occupational psychology 
which aims to explore simultaneously the effects of type of sewing machine 
and method of training on the time needed by a machinist to sew a 
standard garment.

There are three alternative models of the industrial sewing machine. 
They form the levels of the machine factor. They will be referred to as 
machine I, machine 2 and machine 3.

There are four alternative training programmes for the machinists who 
operate the machines. They form the levels of the training factor. They will 
be referred to as method I, method 2, method 3 and method 4.

The number of minutes needed by a machinist to sew a standard garment 
is the dependent variable.

6.2.1 The conduct and layout of the example experiment

The experiment was conducted according to the requirements for general­
ization and proper experimental procedure, as discussed in sections 1.2, 1.3 
and 3.3; namely, subjects were randomly selected from the appropriate 
population and were randomly allocated to a set of conditions.

Sixty employees were allocated, 5 to each of the 12 combinations of 
conditions.

The layout diagram is as in Table 6.1. It shows the numbers of subjects 
in each combination of conditions.
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Table 6.1 Layout diagram for two-factor design example

Training

Method 1 Method 2 Method 3 Method 4 Total

Machine 1 n = 5 n — 5 n = 5 n — 5 20
2 n — 5 n = 5 n = 5 n = 5 20
3 n = 5 n = 5 n = 5 n = 5 20

Total 15 15 15 15 60

6.2.2 The mean scores from the example experiment

The results, expressed as the mean times for each group of five subjects for 
sewing up garments, are set out in Table 6.2. This table displays the mean 
times in the 12 cells. These are called cell means. Also displayed are a 
further seven means along the margins of the table. These are called 
marginal means. The marginal means are the means of all measurements in 
a particular row or column. In the case that there are identical numbers of 
subjects in each cell the marginal means are the means of the means in the 
particular row or column. This applies here.

Table 6.2 Mean sewing times (in minutes)

Training All

1 2 3 4

Machine 1 12.0 13.0 15.0 20.0 15.0
2 9.0 8.0 12.0 15.0 11.0
3 25.0 17.0 19.0 15.0 19.0

All 15.33 12.67 15.33 16.67 15.00

In the bottom right-hand corner is displayed the overall mean. This is the 
mean of the measurements of all 60 subjects taking part in the experiment. 
It is the mean of all the row means and of all the column means provided 
there are identical numbers of subjects in each cell, as in this example.

6.2.3 Examples of users9 questions

Several questions are of interest to the managers of the clothing factory. 
The managers are the users of the findings of the experiment. Their 
questions have led to money being spent on running the experiment. 
Examples of their questions are:

1. Does the method of training make a difference to the time taken sewing 
a standard garment?

2. Does the type of machine used make a difference?
3. If machine 2 is to be used does it matter which method of training is used?
4. Does the method of training to be used depend on the choice of machine?
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These questions fall into the standard categories 
in section 2.3.1. They are, respectively,

1. The main effect of the factor training.
2. The main effect of the factor machine.
3. The simple effect of the factor training at the second level of the factor 

machine.
4. The interaction of the two factors.

For each question a set of means provides the basis for an answer. The 
sets of means are read off from a single row, column or margin of Table 6.2, 
except for the interaction (question 4), for which the answer is based on all

1. 15.33 12.67 15.33 16.67
2. 15.0 11.0 19.0
3. 9.0 8.0 12.0 15.0
4. Training

1 2 3 4

1 12.0 13.0 15.0 20.0
2 9.0 8.0 12.0 15.0
3 25.0 17.0 19.0 15.0

Machine

The above sets of means only provide partial answers to the four 
questions. Consider question 1: ‘Does the method of training make a 
difference to the time taken sewing a standard garment?’ Examination 
of the means, with or without the aid of the bar chart in Fig. 6.1, suggests 
that garments are sewn most quickly by machinists who had experienced 
training method 2. They needed only 12.67 minutes on average compared to 
15.33 minutes for the next quickest. This would imply that yes, the method 
of training does make a difference.

However, it is possible that the training methods are identical in their 
effects. If so, then the relatively small value of the mean sewing time in 
training method 2 must be the result of sampling fluctuation. In other
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Fig. 6.1 Main effect of training.
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words, the chance effects of random allocation resulted in the best machin­
ists being in the group that experienced training method 2. Only a test of 
significance can lead to a decision.

A similar discussion can take place about questions 2 and 3. The appro­
priate set of means can be easily interpreted in the context of the question 
posed by the user of the findings of the experiment. This is not the case, how­
ever, for question 4, the interaction question. The next section discusses this.

6.3 THE EFFECT OF THE INTERACTION OF THE FACTORS

In order to clarify the concept of interaction in its relationship to the simple 
and main effects, there follows a re-examination of the example experiment 
taking the simple effects as the starting point.

As described in section 2.3, and referring again to the above example, the 
interaction of one factor with the other is by definition the existence of 
differences among the simple effects of one factor at the various levels of the 
other factor. How is this to be seen in the sewing machine example?

Consider the simple effect of the training factor at the first level of the 
machine factor. It is defined by the mean sewing times for the type 1 
machine and the various training methods. The means are: 12.0, 13.0, 15.0 
and 20.0. Expressed as deviations from the mean sewing time with this type 
of machine (i.e. 15.0) they are —3, —2, 0 and 5. It appears that training 
method 4 is by far the least effective with this type of machine.

Likewise, the complete set of the simple effects of the training factor at 
the various levels of the machine factor are given in Table 6.3. Each set of 
deviations stands relative to the mean score of subjects experiencing the 
stated level of the machine factor.

Table 6.3 Simple effects of training

Training

Machine type 1 ( -3 , -2 ,  0, + 5)
Machine type 2 (-2 , -3 ,  +1, + 4)
Machine type 3 (+6, -2 ,  0, -4 )

As set out in Table 6.3, the simple effects can be seen to differ one from 
the other. The machine type 3 simple effect of training differs markedly from 
the other two simple effects. In other words, the pattern of deviations 
corresponding to the four training methods appears very different for the 
third type of machine compared with the other two types. Method 4 is the 
best training for machine type 3, whereas it is the worst for machine types 1 
and 2. This is what is meant by interaction.

Definition of interaction

Interaction occurs when one factor’s effect on the dependent variable shows 
a different pattern at the various levels of the other factor.
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This is illustrated in Fig. 6.2, where the simple effects are displayed as bar 
charts of the means. The simple effect of training method for machine 3 
appears to differ even more from those for the other two machines when the 
three bar charts are superimposed to form Fig. 6.3. This is the conventional 
plot of the cell means used to display interaction. It is referred to as an 
interaction diagram.

machine 1 machine 2 machine 3
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Fig. 6.3 Interaction diagram -  machine x training.

The extent of departure of the three lines from the parallel indicates the 
extent of the interaction. If the lines are parallel there is no interaction 
because the same pattern is shown in each simple effect.

As previously discussed, any pattern among the means which suggests 
interaction could be the result of sampling fluctuation. A test of significance 
is required in order that a decision can be made.

How does the main effect relate to the simple effects? It is simply their 
average. This is easily illustrated for our numerical example. The means of 
the columns of Table 6.3 are 0.3333, —2.3333, 0.33333 and 1.6667. These 
are the deviations which make up the main effect of the training factor. 
They are obtained directly by subtracting 15.00, the overall mean, from, in 
turn, 15.33, 12.67, 15.33 and 16.67. Obtaining the same four deviations by
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two different routes lends credibility to the assertion that the main effect is 
the mean of the simple effects.

The pattern of the main effect of the training factor is dissimilar to any of 
its three component simple effects. This is a feature of interaction and its 
presence challenges the existence of the factors as meaningful concepts. The 
training factor is seen here as having a meaning critically dependent on 
subjects’ exposure to another factor: type of machine.

This discussion could equally have taken place in terms of the simple 
effects of the machine factor at the various levels of the training factor. The 
same result would have been achieved. If one set of simple effects differs, so 
must the other set. In other words if factor 1 is interacting with factor 2 
then factor 2 is interacting with factor 1.

6.4 THE PRINCIPLES OF THE ANALYSIS OF VARIANCE 
FOR THE TWO-FACTOR DESIGN

6.4.1 Introduction

In all essentials the analysis of variance for this design follows the principles 
for the single-factor independent groups design set out in section 4.2. The 
variance of scores on the untreated dependent variable (that is the between- 
subjects variance) is estimated within-groups and between-groups. The 
within-group estimate cannot be inflated by any effects of the treatment 
factors or interaction, whereas the between-groups estimate can.

The comparison of the within and between estimates in an F-test leads to 
a decision on the presence of between-group treatments effects.

Comparisons between means can provide estimates of the underlying 
population variance whether they arise from a main effect, a simple effect or 
an interaction.

The details of how these estimates are obtained follow. In general, the 
relevant means are reduced to deviations, squared, added and multiplied by a 
weight to give the SS. This was introduced in section 3.2. (The weight is the 
number of scores on which is based each of the relevant means.)

SS= (weight) (sum of squared deviations among means)
When the SS is divided by the appropriate degrees of freedom the mean square 
results. The mean square is the estimate of the between-subjects variance.

6.4.2 Variance estimate from a main effect

The variance of the means that constitute a main effect estimates the 
between-subject variance divided by the number of scores obtained under 
each condition. However, by identifying the number of scores obtained 
under each condition as the weight as introduced in section 3.2 and 
developed in section 6.4.1, the main effect means can be used to estimate the 
between-subjects variance.

For example, the SS of the means of method of training is obtained as the 
sum of squares of deviations of the means multiplied by the weight. The
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weight is 15. This is the number of subjects experiencing each method of 
training (Table 6.1).

SS of method of training
= 15 [(0.333)2 +  (2.333)2 +  (0.333)2 + (1.667)2]
=  126.67

The corresponding degrees of freedom are (4—1) = 3. Hence the MS, the 
estimate of the between-subjects variance from the variation among the 
means of the training factor is

1 ,42 .22

The general symbolic form of the calculation follows. Suppose factor 1 
has p levels and factor 2 has q levels. Suppose further that there are n 
subjects per group.

The SS for factor 1 (type of machine) is based on the p marginal means 
15.0, 11.0 and 19.0, for which the weight is nq (i.e. (5) (4)). This is because 
each of the means 15.0, 11.0 and 19.0 is based on (5) (4) =  20 measurements.

Likewise the means that are relevant to the main effect of factor 2 (method 
of training) are the q marginal means each obtained from all np subjects whose 
scores contributed. The weight in this case is np. For factor 2 the relevant 
means are 15.33, 12.67, 15.33 and 16.67 and the weight is np, or (5) (3).

The degrees of freedom are always one less than the number of levels of 
the factor, i.e. (p— 1) for factor 1 and (q — 1) for factor 2.

A similar calculation for factor 1, the type of machine, involving degrees 
of freedom of (p—1) = 2 and weight nq = 20 leads to a between-subjects 
variance estimate value of 320.00.

6.4.3 Variance estimate from a simple effect

Consider one of the simple effects of the method of training factor displayed 
in the bar chart in Fig. 6.2. For example: the first one, the effect of the factor 
at the first level of the machine factor.

It is specified by the four relevant means: 12, 13, 15 and 20. The SS is 
obtained as the sum of squares of the deviations of these means from their 
common mean multiplied by the weight. The common mean is 
(12 + 13-1-15-1- 20)/4 =  15.0. The weight is 5 since this is the number of scores 
on which each mean is based (Table 6.1).
The deviations are:

12 — 15= —3
13 — 15= —2 
1 5 -1 5 =  0 
20 — 15= +5

SS =  (5) [ ( -  3)2+ ( -  2)2+ (0)2+ (5)2 ] =  190 
MS = 190/3 

=  63.33
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(Note that d f  = (4 —1) = 3.) Hence the estimate of between-subjects variance 
obtained from one of the simple effects is 63.33.

6.4.4 Variance estimate from the interaction

Introduction

The discussion in section 4.2 is sufficient to explain the formation of 
variance estimates from main and simple effects. An extended further 
discussion is needed to explain the formation of a variance estimate from 
the interaction.

Two approaches to conceptualizing the interaction as deviations follow. 
Each uses the deviations to obtain the SS in the usual way.

SS and MS interaction derived from simple effects

Interaction of factor 1 with factor 2 has been defined in section 6.3 above as 
the variation among the simple effects of factor 2 at the various levels of 
factor 1, or vice versa.

The test of hypothesis of interaction is concerned with the question of 
whether an apparent interaction effect is solely due to the effect on the cell 
means of sampling fluctuation (i.e. H0 is true) or due to a combination of 
the effects of sampling fluctuation and a real interaction effect (i.e. H 0 is 
false).

Consider, in the example, the variation of the simple effects of training at 
each of the three levels of machine from their mean. What is meant by the 
mean of several simple effects?

The concept only makes sense when the simple effects of method of 
training are expressed as deviations and when their mean is expressed as the 
set of deviations corresponding to the main effect. This was introduced in 
section 6.3 and is shown in Table 6.4. It is easily verified that the means of 
the columns set out along the lower margin of Table 6.4 are the deviations 
which describe the main effect of the training factor.

Table 6.4 Simple effects of training as deviations

Training

Machine 1 (-3 , -2 , 0, +5)
Machine 2 (-2 , -3 , +1, +4)
Machine 3 ( + 6, -2 , 0, -4 )

Means of columns (0.333, -2.333, 0.333, 1.667)

The deviations which measure the amount by which the three simple effects 
differ from their mean are obtained (as usual) by subtracting the common 
mean from each of the items. This requires 0.333 to be subtracted from all 
items in the first column, —2.333 to be subtracted from all items in the second 
column, etc. The result is shown in Table 6.5. The array of deviations in
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Table 6.5 describes the variation among the simple effects. (Note: if the three 
simple effects were identical, all 12 of these deviations would be zero.)

SS = (weight) (sum of squared deviations among means)

The weight is the number of scores on which is based any one of the 
relevant means. Here it is 5, the number of subjects in one cell (Table 6.1).

SS = (5) [ ( -  3.333)2 + (0.333)2 + • • • + ( -  0.333)2+ ( -  5.667)2 ]
=  (5) (98.667)
=  493.33

Table 6.5 Deviations of simple effects of training

Machine 1 (-3.333, 0.333, -0.333, 3.333)
Machine 2 (-2.333, -0.667, 0.667, 2.333)
Machine 3 ( 5.667, 0.333, -0.333, -5.667)

The mean square, which is the estimate of between-subject variance, is 
obtained, as usual, by dividing SS by df. The degrees of freedom are found by 
the same reasoning as that used in section 5.4.2, namely that since the 
deviations in every row and every column of the array in Table 6.5 must add 
to zero, only six of the twelve are free to be determined independently. The 
remainder are determined by the constraints of the row and column totals. 
The six free deviations determine the degrees of freedom value: d f =6.

The formula for this is (p — l)(q— 1). Hence

493 33 M S =82.22 
6

The estimate of the between-subjects variance from the interaction is 
therefore 82.22.

The same value could have been obtained from the variation among the 
simple effects of the other factor since interaction is symmetrically related 
to both factors.

SS and M S interaction derived from cell means

This same value for SS of interaction can also be obtained from the cell 
means directly using a different conceptualization. It is a similar approach 
to the one followed in section 5.4.2, where the effect of the conditions factor 
was removed from the balancing times data by subtracting the deviations 
that represent the main effect.

The rationale for this approach is based on an alternative definition of 
interaction.

Definition o f interaction

Interaction is the variation among the cell means not due to the main 
effects of either conditions factor (in this case method of training and type of 
machine).
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The definition is put into effect by removing the effects of first one factor 
and then the other to leave an array of means whose deviations can only 
represent the effect of interaction.

First remove the effect of the type of machine factor by subtracting its 
vector of deviations from the rows of the cell means array in Table 6.6. The 
means of the levels of the machine factor are 15, 11 and 19 with common 
mean 15. These reduce to deviations (0, —4, +4). Subtract these from all 
the means in respective rows (i.e. 0 from all means in the first row, —4 from 
all means in the second row, etc.) to obtain the array of means in Table 6.7. 
Notice that there is no variation among the row means in Table 6.7. The 
effect of the machine factor, which operates on the rows, has been removed.

Table 6.6 Mean sewing times (in minutes)

Training All

1 2 3 4

Machine 1 12 13 15 20 15.00
2 9 8 12 15 11.00
3 25 17 19 15 19.00

All 15.33 12.67 15.33 16.67 15.00

Table 6.7 Mean times with effect of machine removed

Training Row means

Machine 1 12 13 15 20 15.00
2 13 12 16 19 15.00
3 21 13 15 11 15.00

Column means 15.33 12.67 15.33 16.67

Next, the variation due to the training methods factor is removed by 
subtracting the effect of that factor in the form of a vector of deviations 
from the columns of the array of means in Table 6.7.

The training methods vector is (0.33, —2.33, 0.33, 1.67). Accordingly, 0.33 
is subtracted from the values 12, 13 and 21 in the first column, —2.33 is 
subtracted from each of the means in the second column and so on to 
obtain the array of means displayed in Table 6.8.

The deviations of the cell means in Table 6.8 from their overall mean of 
15 cannot be due to the effects of either machine or training factor. That

Table 6.8 Mean times with effects of machine and training removed

Training Row means

Machine 1 11.67 15.33 14.67 18.33 15.00
2 12.67 14.33 15.67 17.33 15.00
3 20.67 15.33 14.67 9.33 15.00

Column means 15.00 15.00 15.00 15.00
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these have both been fully removed is evident from the lack of variation 
among the row and column marginal means.

The remaining variation is therefore due to the effect of interaction of the 
two factors. It is taken for granted that sampling fluctuation is either an 
alternative or additional cause of the remaining variation.

The deviations from the overall mean of 15 of the adjusted cell means in 
Table 6.8 are given in Table 6.9, which is the same as Table 6.5. The two 
approaches lead to the same set of deviations to represent the effect of the 
interaction.

The SS = 493.33, as before, to give the estimate of between-subjects 
variance as MS =  82.22.

Table 6.9 Mean times with effects of machine and training and the overall mean 
removed

Training

Machine 1 - 3 . 3 3 +  0 .3 3 - 0 . 3 3 +  3 .3 3
Machine 2 - 2 . 3 3 - 0 . 6 7 +  0 .6 7 +  2 .3 3
Machine 3 +  5 .6 7 +  0 .3 3 - 0 . 3 3 - 5 . 6 7

Note that there is a convenient computational method for calculating SS 
for interaction, described in section 13.5.5.

6.5 THE SUMMARY TABLE AND TESTS OF SIGNIFICANCE

6.5.1 Rationale

There are three independent estimates of the between-subjects variance 
arising respectively from the effects of the factors and their interaction. 
These are unbiased estimates only if the apparent effects of the factors and 
interactions are caused by sampling fluctuation. Any true effects of the 
conditions factors and interaction will inflate the values of the estimates as 
discussed previously.

The F-test of significance depends on comparing the above estimates 
with an estimate that cannot be so inflated. Such an estimate is the within- 
groups estimate. It is exactly comparable to the estimate of the same name 
in the single-factor design, and is calculated by a similar formula (section
4.3.2). For the calculation see section 6.6.2.

As in the single-factor independent groups design, SS is a measure of 
variation so scaled that SStotal, the sum of squared deviations from the 
overall mean of every individual score can be decomposed into the four SSs 
which are the measures of variation due to the above sources.

The general expressions factor 1 and factor 2 will be used to stand for 
type of machine and method of training respectively.

It is an algebraic truism that:

SS total ^  actor 1 4" ^^factor2 4“ ^^interaction 4" wi thin

The variation between-subjects is also referred to as individual differences, 
residual, error or within-groups variation.
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The degrees of freedom follow from the discussion above or directly from 
the formulae set out in the next section.

6.5.2 Formulae for degrees of freedom

d f for SStotal= iV - l ,  for SSfactorl = p - l ,  for SS{actor2 = q - 1, for 
SSinteraction = ( p - l ) ( ^ - l )  and for SSYfithin = pq(n -l), where N  is npq, the 
total number of subjects, n is the number of subjects per group, and p and q 
are the number of levels (conditions) in factors 1 and 2 respectively.

6.5.3 The summary table and size of effect

The summary table

The summary table is shown in Table 6.10. The calculations of all SSs 
except S S within and S S totai are demonstrated in sections 6.4.2, 6.4.3 and 6.4.4 
in support of the explanation of principles. All are calculated in section
6.6.2 in the demonstration of the formulae for hand calculation.

Table 6.10 Analysis of variance summary table

Source df SS MS F

Factor 1 (Machine) 2 640.00 320.00 118.52
Factor 2 (Training) 3 126.67 42.22 15.64
Interaction 6 493.33 82.22 30.45
Within 48 129.38 2.70

Total 59 1389.38

Size of effects

The size of the effects of each factor and the interaction can be expressed as 
the proportion of the total SS explained by each.

Thus factor 1 (machine), factor 2 (training) and their interaction explain, 
respectively,

640.00/1389.38 =  46%
126/1389.38 =  9%
493.33/1389.38 = 36%

of the total variation in sewing times. This leaves 9% of the variation 
unexplained.

6.5.4 Interpretation of the analysis

The main component of the interpretation is the testing of hypotheses about 
the main effects and interaction. For each of these sources of variance F is 
calculated in order to decide whether or not H0 should be rejected. H 0 
represents the hypothesis that the source of variation has no effect.

F is calculated by dividing the mean square of the source by the MS
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within. The logic of this is discussed in section 6.4. The between-subjects 
variance is estimated by MSwithin as 2.70. 

The critical values of F at the 0.05 significance level (to be found 
tabulated in Appendix F) for factor 1, factor 2 and interaction, respectively, 
are 3.23, 2.84 and 2.34 based on (2, 48), (3, 48) and (6, 48) degrees of 
freedom. Since these are greatly exceeded by the observed values ofF, the 
H 0 of no effect can be rejected in every case. 

The conclusion is that both factors and the interaction make a contribu­
tion to the variation in score. 

Furthermore, since subjects were randomly allocated to groups it can be 
concluded that training method, machine type and their interaction all 
independently caused differences among the cell and marginal means. In 
other words, the factors and interaction affect the sewing times for the 
standard garment. 

Interpretation of the user's questions (section 6.2.3) 

The questions were: 

1. Does the method of training make a difference to the time taken sewing 
up a standard garment? 

2. Does the type of machine used make a difference? 
3. If machine 2 is to be used does it matter which method of training is used? 
4. Does the method of training to be used depend on the choice of machine? 

The answer to question 1 is 'yes', since 15.64 exceeds the critical F of 2.84. 
The answer to question 2 is 'yes', since 118.52 exceeds the critical F of 

3.23. 
The answer to question 3 is found using the approach in section 6.4.3. It 

cannot be obtained directly from the ANOVA summary table. The answer 
is 'yes' since F for the simple effect is 18.52. 

The answer to question 4 is 'yes', since 30.45 exceeds the critical F of 2.34. 

6.6 COMPUTATIONAL FORMULAE FOR HAND CALCULATION 
OF SSs 

6.6.1 Algebraic formulae 

Most readers will prefer to obtain the summary table (Table 6.10) by use of 
one of the many statistical computer packages. However, the formulae for 
SS s that are most convenient for hand calculation are as follows: 

T2 
SS,otal = IIX2

- N 

SSr 1= -+-+ .. ·+- --(
Tf. n. r;.) T 2 

actor nq nq nq N 

SSr r2 = -+-+ "· +- --(T~t T~2 T~q) T 2 
acto np np np N 
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 _______ |____ PQ

n n

^^interaction ^^total ^ ^ fac tor l ^^factor2 ^^w ithin

where Y L X 2 is the sum of squares of all raw scores, 7V is the total of the 
scores at the ith level of factor 1, T.j is the total of the scores at the jth  level 
of factor 2, Ti7 is the total of the scores at the ith level of factor 1 and the ;th  
level of factor 2, Tis the total of all scores, p and q are the number of levels 
of factors 1 and 2 respectively, n is the number of subjects per cell and N  
(= npq) is the total number of subjects.

Degrees of freedom

df for SSt0tai N  1, for ^^factorl P ^ f̂actor2 for ^̂ interaction
= (P -  !)(?-1). and for SSwithin = p q (n -1).

An example will illustrate the calculation and the tests of significance.

6.6.2 Hand-worked numerical example of two-factor design

There follows a presentation of the 3 x 4 two-factor design referred to as the 
sewing times example of section 6.2. The complete array of measurements 
on the d.v. for the 60 subjects is shown in Table 6.11. The corresponding 
means are as set out in Table 6.2.

It is normally expected that a computer is used to calculate all SSs. 
However, for those special occasions on which a hand calculation is 
required, the formulae of section 6.6.1 will now be illustrated.

Table 6.11 Sewing times in minutes

Levels of factor 2, training

1 2 3 4

Levels of factor 1 1 12.5 13.1 15.5 20.3
type of machine 11.5 12.5 14.2 22.0

13.9 11.0 13.9 18.5
12.8 12.1 14.0 19.4
9.3 16.3 17.4 19.8

2 9.6 7.3 12.1 15.2
11.4 8.1 13.6 15.0
7.3 8.9 11.4 17.6
8.9 9.2 10.0 14.1
7.8 6.5 12.9 13.1

3 25.8 17.4 19.4 14.3
27.2 17.9 17.1 15.5
24.3 15.8 16.5 17.0
22.0 15.2 20.0 14.8
25.7 18.7 22.0 13.4
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First, calculate the cell totals:

T11= 12.5+ 11.5+ 13.9+ 12.8+9.3 =  60 
T12 =  13.1+ 12.5+ 11.0+12.1+ 16.3= 65
Ti3 =
t 14=

75
100

T21= 9.6+  11.4+7.3+ 8.9+ 7.8 =  45
T22 — 40

II 60
T2 4 = 75

T31 = 125
t 32 = 85
t 33 = 95
T3 4 = 75

t, calculate the row totals:

TV = T 11+ T 12 + T13 +  T14 = 300
t 2. =  r 21 + r 22 +  t 23 +  t 24 =  220
r 3. = =  380

T.x = T 11 +  T21+ r 31 =  230
t .2 =  r 12 +  r 22 +  r 32 =  190
r .3 = 230
r .4 = 250

Finally, the overall total T = T 1, + T2. + T3.=  900, and again, as a check, 
T =  T. x +  T.2 +  T.3 +  T .4 =  900. p is the number of levels of factor 1 = 3; q is 
the number of levels of factor 2=4; N  is total number of measurements 
=  60; and n is number of measurements per cell =  5. Then:

E E * 2 = 12.52 + 13.12 +  • • • +  22.02 + 13.42 =  14 889.4 
SStotal =  14 889.4 -  (9002/60) = 1389.4 
SSfactor! =  (3002/20 +  2202/20 + 3802/20) -  (9002/60) =  640.0 
SSfactor2 =(2302/15 +1902/15 +  2302/15 +  2502/15)-(9002/60)

= 126.67
SSwithin =  14 889.4—(602/5 +  652/5 + -  + 952/5 +  752/5)

=  129.38

Since:

5 5 f acIor i + S S factor2 +  5 S intcraction +  S S within =  S S total 

we can rearrange to get

^̂ interaction = ^ t̂otal 55factor 1 55factor2 ^̂ within
=  1389.4-640.0-126.67-129.38 
=493.35

This completes the calculation of all SSs required for the analysis of 
variance summary table in section 6.5.3.
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6.7 UNDERLYING MODEL AND ASSUMPTIONS FOR 
TESTS OF SIGNIFICANCE

Underlying model

The effects of the conditions and interactions are assumed to be additive. 
That means that a particular level of a factor (i.e. a condition) is supposed 
to increment or decrement the scores of all subjects exposed to it by an 
identical amount.

This additive property implies that a particular subject’s score is explain­
able by the following formula:

Expected
score for „ , effect of , effect of , effect of

, , = overall mean + r . 1  + r * *» + • *a randomly factor 1  factor 2  interaction
sampled subject

For the numerical example above the model appears as 

Expected
score for f r 0  3 3 3 -) 3  3 3 3

a randomly = 1 5 -W -4 ^  + J -2 .3 3 3 1 +  < - 2 . 3 3 3  

sampled I 4J ) 0.333 f { 5.667
subject I

The four terms in the above model when appropriately added give 
the value of the score expected when a randomly sampled subject ex­
periences a particular combination of levels of the two factors. This is a 
direct extension of the model for the single-factor design set out in section
4.4.2.

According to this model the score for a subject experiencing the second 
level of factor 1  and the third level of factor 2  is

1 5 + (-  4)+(0.333)+(0.667) =  12.0
Note that 12.0 is exactly the mean score of subjects experiencing the 
specified levels of factors 1 and 2. This shows that this model completely 
explains the observed cell means in terms of three independent effects -  the 
two factors and their interaction.

0.333 -0.333 3.333)
-0.667 0.667 2.333 ^

0.333 -0.333 -5.667)

Assumptions for validity o f the F-test

The assumptions on which depends the validity of the tests of significance 
are: the use of random sampling and allocation; the additive nature of the 
conditions, and the scores having a normal distribution in the population. 
See section 4.6 for a fuller discussion of these assumptions.

6 . 8  EXERCISES

6.1 Consider the numerical example in section 6.2. The experiment is from 
occupational psychology. Factor 1 refers to three alternative designs for an
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industrial sewing machine. Call this factor machine. Factor 2 refers to four 
alternative training programmes for operatives of the machines. Call this 
factor training.

Suppose the dependent variable is the number of minutes needed by an 
operative to sew up a standard job.

Sixty employees were allocated at random, 5 to each of the 12 combina­
tions of conditions. The mean times were as in Table 6.2.

(a) Identify the best and worst combinations of machine and training 
programme.

(b) Overall which is the worst machine? Which is the worst training 
programme?

(c) Display all the simple effects of the training factor as bar charts. Are 
there indications of an interaction? (See Fig. 6.2.)

(d) Which of the four simple effects of machine is the least like the main 
effect of machine?

(e) Express the main effect of machine as deviations. Do the same for the 
main effect of training.

(f) Subtract from every row of the array of cell means the corresponding 
deviation due to the main effect of machine. This removes the effect of 
machine from the data (and leaves every row having the same mean) 
(Table 6.7).

Further simplify the data by removing the effect of training from the 
columns (thus leaving every column having the same mean). (The result 
is same as Table 6.8.)

What is the explanation for this remaining variation among the 
means in this twice-simplified table?

(g) Analyse this experiment by use of a suitable computer system. Obtain:

(i) The mean scores that express both main effects and the interac­
tion.

(ii) A graphical display for each main effect and the interaction.
(iii) An analysis of variance summary table with p- value or equivalent 

indication of significance of each of the three effects referred to in
(i) and (ii) above.

Compare the results with Table 6.10 and the interpretation of 
the analysis in section 6.5.4.

6.2 Thirty male and thirty female gerbils were randomly allocated, in single 
sex groups, to one of the following three conditions:

no experience of novel food 
smell of novel food
contact with demonstrator gerbil used to novel food

There were 10 gerbils in each group. The dependent variable was the 
amount of the novel food eaten in grammes.
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The mean scores in each group were:

Condition

1 2  3 Means

Female 0.25 0.21 0.32 0.26
Sex

Male 0.23 0.15 0.16 0.18

Means 0.24 0.18 0.24 0.22

The ANOVA summary table was:

Source SS d f
Condition 0.048 2
Sex 0.096 1
Interaction 0.052 2
Within (error) 0.342 54

(a) Complete the tests of significance of condition, sex and condition x sex 
interaction. (Table 6.10 is a model.)

(b) Display all three sources of variation on appropriate sketch graphs.
(c) What is the difficulty of interpretation of the main effect of condition?
(d) Which is the largest simple effect of sex?

Which is the largest simple effect of condition?
(e) Complete the tests of significance of each of the simple effects of 

condition (section 6.4.2).
(f) Are any of the simple effects of sex not significant?
(g) How do the sizes (in terms of SS s) of the simple effects of condition 

compare with the sizes of the main effect of condition and the interac­
tion? Do you notice anything strange?

(h) Summarize the results of the experiment in simple English.
(i) Given that the deviations which describe each of the main effects and 

interaction are as set out in the additive model:

amount=0.22 + j + j  + j -  0 .0 4 }  +  { 
eaten \ - a 0 4 /  } + 0 0 2 { j

r r t
sex condition interaction

(i) What amount would you expect to be eaten by a male gerbil in the 
‘smell’ condition? (See section 6.7.)

(ii) Use the deviations that represent the interaction to confirm the 
value SS = 0.052.

-0.03 -0.01 +0.041 
+ 0.03 +0.01 — 0.04J



7 Single-factor independent 
groups design with 
covariate

7.1 INTRODUCTION

The use of a covariate to adjust the scores arising from an experiment was 
introduced in section 2.4. Its purpose is to improve the sensitivity and 
efficiency of the design. It will achieve this provided the covariate possesses 
certain properties.

The concept and technique of adjustment is dealt with in section 7.2 
through an example using real data. Both an intuitive rule of thumb 
approximation and an exact method based on the technique known as 
regression are used.

Section 7.3 deals with the application of adjustment to the dependent 
variable of a single-factor independent groups experiment. The effect of 
adjustment on the analysis of variance summary table is demonstrated 
using the example that was introduced in section 2.4.

Section 7.4 shows how the covariate adjustment has an effect which 
appears as an additional term in the underlying model.

7.2 THE CONCEPT AND TECHNIQUE OF COVARIATE 
ADJUSTMENT

Covariate adjustment makes use of one measurement, the covariate, to adjust 
another measurement, the dependent variable. Both measurements must be 
continuous variables on scales with the equal value interval property (section
1.1.2). They need to be correlated for any benefit to be obtained. The 
magnitude of the correlation required for a given degree of benefit is discussed 
in section 7.4. The covariate is not the focus of interest in the research.

The idea is a simple one. Each subject’s score on the dependent variable 
is adjusted to what it would have been if all subjects had an identical value 
of the covariate. An example will help to make this clear.

Suppose reading scores have been obtained for all pupils in a primary 
school class. The pupils’ ages range from 7 years 2 months to 8 years 1 
month. Figure 7.1 shows the relationship of reading score to age. A straight 
line has been drawn on the graph to represent the way the reading scores 
change with age over the whole group.
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Fig. 7.1 Reading score versus age for a primary school class. 

In this example, covariate adjustment would consist in estimating reading 
scores for the hypothetical situation in which all pupils had been measured at 
the same age. The estimation is based on the straight line relationship of 
reading score to age evidenced in Fig. 7.1. Scores increase from about 27 at 7 
years 4 months to about 37 at 8 years 1 month. That is an increase of 10 units 
in 9 months or approximately 1 unit per month. This rate of increase 
corresponds to the gradient of the line on the graph in Fig. 7.1. 

Suppose each individual progresses in reading at the rate shown by the 
whole group. In other words, suppose each individual advances by 1 unit 
per month. This supposition could only be confirmed by following the 
progress of a group of pupils over a period of time. 

It is a straightforward matter to estimate what each pupil's reading score 
would have been at any given age by adding or subtracting 1 unit of score 
for each month of age added or subtracted. 

Choose an arbitrary standard age, say 7 years 6 months, and adjust each 
pupil's score to this standard. The calculations are set out in Table 7.1. The 
adjusted scores range from 27 to 31 compared to 26 to 37 in the unadjusted 
scores. This shows how the variation in reading scores among the children 
has been reduced or accounted for or explained by the covariate age. This is 
seen also in the scatter-plot of adjusted reading score against age in Fig. 7.2 
in comparison with Fig. 7.1. 

Table 7.1 Reading scores and ages of 12 pupils 

Pupil no. 1 2 3 4 5 6 7 8 9 10 11 12 

Age 7,2 7,3 7,5 7,5 7,5 7,7 7,8 7,9 7,11 7,11 8,1 8,1 
Reading score 26 28 26 27 30 31 33 31 32 36 35 37 
Adjusted 30 31 27 28 31 30 31 28 27 31 28 30 
reading score 

The rough and ready adjustment method used above is normally replaced 
by a mathematically rigorous method based on the best fitting straight line 
obtained by the regression technique. In the example above, using a suitable 
computer package, the line is found to be described by the following equation: 

score=( -52.7)+(0.91) (age in months) 
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Fig. 7.2 Reading score adjusted for age for a primary school class.

This is a model which states that score increases by 0.91 units for 
each month’s increase in age (i.e. the gradient is 0.91). This compares to
1.00 units gauged by eye. The formula, based on this value of the 
gradient, which generates the adjusted score value for a particular pupil 
is:

adjusted score = unadjusted score —(0.91) (actual age -  standard age)

The use of this formula is now illustrated for pupil number 1:

adjusted score = 2 6 —(0.91) (86 — 90)
=  26—(0.91)( —4)
= 26 + 3.64 
= 29.64

(Note that 86 and 90 months are 7 years 2 months and 7 years 6 months, 
respectively.) This compares to 30 using the intuitive method.

7.3 THE EFFECT OF COVARIATE ADJUSTMENT ON 
VARIANCE ESTIMATES

The basic single-factor design is discussed in sections 2.1 and 4.1. It involves 
randomly allocating subjects to different levels of a factor and measuring a 
response, known as the dependent variable, for each subject.

In section 4.4 it was shown that the variation from subject to subject in 
the dependent variable (total SS) can be explained by a combination of 
individual differences between-subjects (within-group SS) and the differen­
tial effects of the conditions (between-groups SS). In fact:

total SS = between-groups SS + within-groups SS

Since the dependent variable values are altered by the covariate adjust­
ments, all three of the SSs are affected. The result is an adjusted summary 
table and a correspondingly altered significance test result.

The example from section 2.4 will illustrate this. Eighteen rats are 
randomly allocated, nine to each of two conditions. Each group experiences 
a different drug treatment, A for the first group, B for the second. Scores are
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obtained on a dependent variable, pulse, under the influence of the drug. 
Scores are also obtained or are already available on a covariate. The weight 
of the rat in grams is the covariate. The scores are set out in Table 7.2.

Table 7.2 Pulse rates and weights of 18 rats

Rat No. Drug Pulse W eight Rat No. Drug Pulse W eight

1 A 330 460 10 B 330 450
2 A 290 450 11 B 310 440
3 A 285 380 12 B 300 408
4 A 280 370 13 B 270 445
5 A 275 420 14 B 260 380
6 A 270 375 15 B 245 425
7 A 270 350 16 B 240 380
8 A 260 365 17 B 235 320
9 A 245 355 18 B 220 330

Mean 278.3 Mean 267.8

Consider the analysis of variance which results if no use is made of the 
weights of the rats. Table 7.3 summarizes the analysis.

Table 7.3 Analysis of variance on pulse rates

Source df SS MS F p-value

Drug 1 501 501 0.51 0.487
Within-groups 16 15 856 991

Total 17 16 357

The estimate of the within-groups (individual differences or between- 
subjects) variance is 991. It is labelled ‘within-groups MS’ in the table. The 
interpretation of the p-value, as introduced in section 3.6, is that the effect 
of the drug is not significant since p is greater than 0.05.

If the pulse rates are adjusted for the weights of the rats a separate analysis 
of variance results. This is called an analysis of covariance (ANCOVA) and is 
summarized in Table 7.4. Note that the degrees of freedom for within-groups 
and total are each reduced by one for the adjusted model.

Table 7.4 Analysis of covariance for pulse rates

Source Adj. df Adj. SS MS F p-value

Drug 1 844.1 844.1 1.97 0.181
Within-groups 15 6442.9 429.5

Total 16 7287

The estimate of the within-groups variance after adjustment is 429.5. This 
is about half the value obtained when no adjustment is made. The 
interpretation of this reduction is that the unadjusted variance is larger 
because it includes variation in pulse rates due to the variation in weights
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of the rats. 429.5 is the value that would be expected if rats of identical 
weights had been sampled.

Another expression for this adjustment procedure is partialling out. The 
effect of body weight has been partialled out. The benefit of adjustment 
can be seen by comparing the two summary tables. Because of the 
reduction in the within-groups mean square the F-value for the test of 
significance has increased from 0.51 to 1.97. In this example, since Fc at 
the 0.05 level is 4.54, the increase has not been large enough to lead to a 
decision to reject H 0. However, in other circumstances such an increase 
could have the effect of changing a non-significant result into a significant 
result.

Another way of viewing the benefit is by comparing the proportion of the 
total SS explained by the drugs treatments in the two analyses. This is set 
out in Table 7.5.

Table 7.5 Proportions of total SS explained in unadjusted 
and adjusted analyses

Drugs SS Total SS Proportion

Unadjusted 501 16 357 3%
Adjusted 844 7287 12%

The benefit in terms of improved sensitivity and efficiency for this 
example is discussed in section 9.2.

Most computer programs for analysis of covariance provide the adjusted 
values of the means of the dependent variable. In an experiment conducted 
according to the proper procedures, subjects will be randomly allocated to 
groups. This should result in approximately the same distribution of values 
of the covariate in all groups. In turn, this should lead to only a very 
limited effect of adjustment on the differences among the means of the 
dependent variable. In the experiment illustrated here the relevant means 
are set out in Table 7.6. This shows that randomization did indeed share 
out the body weights fairly between the two groups. This has led to very 
little effect of adjustment on the differences among the mean pulse rates. In 
fact the adjusted difference is 279.9—266.2= 13.7 compared to the unadjus­
ted difference, 278.3 —267.8 =  10.5. The slightly larger mean difference in the 
adjusted analysis has led to a corresponding increase in the value of the SS 
for the conditions factor. It increases from 501 to 844 due to the adjust­
ment.

Table 7.6 Means in unadjusted and adjusted models

Covariate mean Dependent variable mean
(body weight) Unadjusted Adjusted

Drug A 
Drug B

391.7
397.6

278.3
267.8

279.9
266.2
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7.4 UNDERLYING MODEL AND ASSUMPTIONS FOR TESTS 
OF SIGNIFICANCE

The underlying model of ANCOVA is based on the one for the single­
factor independent groups design (section 4.6), but with the addition of a 
term which represents the effect of the covariate. It is:

Expected score for „ ....* A , overall , conditions , covariatea randomly =  +  +
sampled subject

For the numerical example this model appears as: 

expected score =273.05
f + 6.851 
[ -6 .8 5 ]

0.5389
(covar—394.61)

The effect of the factor is expressed as deviations, as in the other models 
introduced in Chapters 4, 5 and 6.

The covariate effect term in the model needs some explanation. The 
gradient value, 0.5389, has been obtained using a statistical computer 
package. The bracketed expression consists of covar, the value of an 
individual’s covariate score with 394.61 subtracted from it. 394.61 is the 
mean covariate (i.e. the mean rat weight) over all 18 rats.

The rationale for the covariate effect term is that it is a deviation from 
the score that would be expected from a knowledge of only the overall 
mean and conditions effect. It is the amount by which the individual differs 
in covariate value from the overall mean covariate value multiplied by the 
scale factor (0.5389). The scale factor or gradient converts units of covariate 
into units of score.

(Note that in the model the conditions effect has been adjusted for the 
effect of the covariate. The deviations +  6.85 are derived from the adjusted 
rather than the unadjusted means. Note also that the model is satisfied by 
all points on the plotted regression lines in Fig. 2.9. In mathematical jargon 
it is said to be the equation of those lines.)

The interpretation of this model is easily illustrated with an example. For 
a rat given drug A (i.e. the first level of treatment) and with a value of 400 
grams for the covariate, the pulse rate is expected to be

score = 273.05 + 6.85 + 0.5389(400 -  394.61)
= 282.805

All the usual assumptions for the analysis of variance model apply, 
namely that the conditions effect is additive and that the individual scores 
are normally distributed with identical variance in the populations from 
which the individuals are sampled.

There are the additional assumptions that the gradients of the regression 
lines are identical in the populations and that the regression effects and 
conditions effects are additive.

Furthermore, adjustment has to be credible. It is assumed, as mentioned 
in sections 2.4 and 7.2, that the scores of individuals can be estimated or
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adjusted to what they would have been if those individuals had had some 
other value of the covariate.

7.5 EXERCISES

7.1 A study compared three methods of teaching map reading:

Method I: all taught in the classroom
Method II: half taught in classroom, half in the field
Method III: all taught in the field

It was thought that the more formal education a person had experienced, 
the better he or she could be expected to do on the course. Accordingly, the 
number of years of post-16 education the person had experienced was used 
in the analysis as a continuous covariate (X).

The dependent variable was the person’s score out of 10 on a test of map 
reading ability (7).

Individuals from a sample of 21 were selected at random and allocated, 
seven to each method.

The means of Y and X  were:

Method 1 Method 2 Method 3 Overall

mean Y  4.43 7.57 6.71 6.24
mean X  2.14 3.43 2.71 2.76

The unadjusted and adjusted SS s for methods and within-groups are:

Source SS SSa<ij

methods 36.95 16.94
within-groups 26.86 10.30

(a) Set out the ANOVA summary table for the effect of method based 
on the SS s unadjusted for, and again adjusted for, the effect of 
the covariate. Complete the test of significance in each case (section 
7.3).

(b) If the underlying model is

f“L33lestimated score = 6.24+< +0.79 >+0.743(covar—2.76)
(+0.53 J

obtain the estimated score for a person taught by Method I who had 
four years of post-16 education.

(c) Calculate and compare the proportions of variation in score explained by 
methods with and without the covariate (X) partialled out.



Exercises 75

(d) Carry out an ANCOVA analysis of the data in Table 7.2 using an appro­
priate computer package. Obtain:

(i) The adjusted and unadjusted mean scores on the dependent variable 
in the three conditions.

(ii) The gradient.
(iii) A graphical display of the means in (a) as a bar chart or equivalent.
(iv) Analysis of variance summary tables for the adjusted and unadjusted 

SS s with p-values or equivalent indication of significance.



8 Contrasts and
 comparisons among 

means

8.1 INTRODUCTION

The analysis of variance and F-tests introduced in section 3.7 and discussed 
in detail in sections 4.4, 5.4 and 6.5 serve to test the omnibus or general 
hypothesis of differences among the population means. This section is 
concerned with more specific tests among the means.

Section 8.2 deals with the use of coefficients to formulate linear contrasts 
which specify the comparisons required by the researcher. The method for 
carrying out the test is also covered.

Section 8.3 deals with a posteriori tests of comparisons and section 8.4 
presents a decision chart to assist in choosing the appropriate method.

8.2 FORMULATING AND TESTING A COMPARISON 
AMONG MEANS

8.2.1 Introduction

Take as an example the between-subjects gerbil experiment of section 4.3.1. 
The mean scores of the three groups of gerbils are set out in Table 8.1 and 
displayed graphically in Fig. 8.1.

The standard analysis of variance presented in Chapter 4 is testing the 
hypothesis that, in the population, the means do not differ against the 
alternative hypothesis that they do differ. The experimenter may wish to 
test more specific alternative hypotheses.

Table 8.1 Mean percentage returns

Degree of Mean Group
interruption

None 38.75 1
Partial 60.63 2
Complete 47.00 3

Overall mean: 48.79
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Fig. 8.1 Effect of interruption on the return to original feeding site.

Examples of specific alternative hypotheses for the gerbil experiment are:

(a) None differs from Complete.
(b) Partial differs from Complete.
(c) None differs from the mean of Partial and Complete.
(d) There is a trend to increasing mean scores in the population from None 

to Partial to Complete.
The corresponding null hypotheses state that the specified means do not 
differ or that there is no trend. All of (a) to (d) consist of comparisons (also 
known as contrasts) among conditions.

Contrasts which involve only two means, such as (a) and (b) above, are 
referred to as pair-wise contrasts, whereas contrasts involving more than two 
means, such as (c) and (d) above, are referred to as multi-mean contrasts.

In order to carry out the test of hypothesis the contrast is first specified in 
terms of coefficients. The coefficients are a set of integers selected according 
to rules set out in section 8.2.2.

The examples of specific hypotheses with the appropriate coefficients are:

(a) None differs from Complete.
coefficients (— 1, 0, -hi)

(b) Partial differs from Complete.
coefficients (0, — 1, -hi)

(c) None differs from the mean of Partial and Complete.
coefficients ( — 2, + 1, +1)

(d) There is a trend to increasing mean scores from None to Partial to 
Complete.

coefficients (— 1, 0, +1)

8.2.2 The rules for selecting coefficients
1. There must be a coefficient associated with each mean.
2. Two sets of means are identified. One set of means is to be contrasted 

with another set. The coefficients of the means in a set are the same 
(except for trend coefficients. See 5). The coefficients in one set always 
differ from those in the other set in sign and may differ in magnitude.
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3. The coefficients add to zero.
4. Means not included in the contrast have zero coefficients.
5. A trend across a particular ordering of the means is specified by 

coefficients which increase in equal sized steps from left to right, e.g.

- 1  0 +1
- 3  - 1  +1 +3
- 2  - 1  0 +1  + 2

etc., depending on the number of means. Thus a trend is a comparison 
between the weighted means with positive and those with negative 
signed coefficients.

8.2.3 Calculation of the linear contrast function

The linear contrast function of the means is calculated by multiplying each 
mean by its coefficient and totalling the products. Consider hypothesis 
example (c) above:

L = ( -  2X38.75) +  ( + 1)(60.63) +  ( + 1)(47.00) =  30.13

Here L stands for the linear contrast function. The numerical value of L is 
used in a formula to obtain the sum of squares for the contrast. This is the 
sum of squares (SS) needed for completion of the test of significance.

8.2.4 The sum of squares of the contrast

The SS for the contrast is the square of the difference between two weighted 
means, the mean of the means with negative coefficients and the mean of 
the means with positive coefficients.

Fortunately the formula is very easy to use. It is:

nl?
SS —

c? +  d  + c | +  —

where n is the sample size for any one treatment or condition and cl9 c2, c3, 
etc. are the coefficients.

In this example we obtain

s s , W 3 £ V 1210.42
2 + 1 + 1

8.2.5 The test of significance of the contrast

All contrasts have one degree of freedom. Hence the mean square of the 
contrast has the same value as the SS.

The F-test is constructed by dividing the MS of the contrast by the 
M Serror that was used in the general ANOVA F-test. In the gerbil example 
the ANOVA summary table for the general F-test of conditions is set out in 
Table 8.2 (reproduced from Table 4.3).
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Table 8.2 Summary table for analysis of variance

Source of SS df Mean square F
variation

Between-groups 1953 2 976.50 4.51
Within-groups (error) 4545 21 216.42

Total 6498 23

Continuing with the test of hypothesis of contrast example (c) above:

_ MS of contrast 1210.42 _ __ _
F = -------------------- =  =  5.593

MS error 216.42

This F value, 5.593, has to be compared with the appropriate critical 
value of F with (1,21) degrees of freedom which is 4.32 at the 0.05 signi­
ficance level. Note that the d f  of the M Serror is taken directly from the 
analysis of variance.

Since F exceeds its critical value a decision is made to reject H 0 and 
conclude that None differs from the mean of Partial and Complete.

The calculations for examples (a), (b) and (d) follow the same pattern. 
Only the coefficients are different.

8.2.6 The directional test of significance of a contrast

In most cases the researcher wishes to test a hypothesis of a contrast which 
has a particular direction. For example, consider again the example (b):

(b) Partial differs from Complete.

The researcher may have been interested in testing the directional hypo­
thesis:

(bl) Partial exceeds Complete.

The tables of critical F usually available do not provide the appropriate 
values for directional tests. However, since there is only one degree of freedom 
for the numerator (always true for contrasts), the F value is the square of the 
corresponding t value. The tables of critical t values (Appendix F.l) provide 
directional values. The directional critical t for 21 degrees of freedom at the
0.05 significance level is 1.721. The square of this, 2.962, is the directional 
critical F.

To complete the directional test it is only necessary to compare the 
appropriately calculated F value with 2.962. When it exceeds its critical 
value, the decision is made to reject H0 in favour of H 1.

(Note that rejection is ruled out immediately if the observed values of the 
means are not in the direction specified by the alternative hypothesis. Note 
also that for the 0.05 significance level the directional critical F can be 
obtained directly from Table F.2 in Appendix F.)
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8.2.7 Testing a contrast for a within-subjects design

Take as an example the within-subjects dowel balancing experiment in 
section 5.4.1 (Table 8.3). Suppose it is required to test the contrast:

silent versus the mean of speaking and humming
Table 8.3 Mean balancing times

Condition Mean Group

Silent 10.0 1
Speaking 6.0 2
Humming 5.0 3

Overall mean: 7.0

The coefficients are —2, +1 and +1.

L = ( -  2)(10.0) +  ( + 1)(6.0) +  ( + 1)(5.0)
= -9 .0

2 + 1 + 1

_54X)_ 3  

4.0

on (1, 6) degrees of freedom.
Here 4.0 is the MSreliability from Table 5.4. It is the MSerror used in the 

general F-test and its degrees of freedom are 6.
The critical F is 5.99 at the 0.05 significance level. Since 13.5 exceeds 5.99 

it is decided to reject H0 and conclude that silent differs from the mean of 
speaking and humming.

8.3 A POSTERIORI TESTS OF COMPARISONS

8.3.1 Introduction
An a priori test of contrast is one that the experimenter had decided on 
when the experiment was designed. The researcher had a theory which 
predicted the contrast. The techniques described in section 8.2 apply to a 
priori contrasts.

An a posteriori (also known as post hoc) test of a contrast is one that the 
experimenter decides on after seeing the results. A theory is generated to 
explain a specific contrast that interests the researcher. A more stringent 
criterion for rejection of the null hypothesis is required because contrasts 
showing, possibly by chance, large differences between means are more 
likely to attract the attention of the researcher.

Two techniques will be described. The Scheffe corrected F-test for a 
posteriori multi-mean comparisons and the Newman-Keuls test for a 
posteriori pair-wise comparisons.
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8.3.2 Scheffe corrected F-test

This is the most widely used of a number of well-known a posteriori tests. A 
full account can be found in Scheffe (1959).

The procedure is the same as for the uncorrected F-test described in 
section 8.2 above, but makes use of a corrected critical F. The corrected 
critical F is obtained by looking up the critical value of F  (known as Fc) 
using the same^ degrees of freedom as used in the general F-test of 
conditions and multiplying it by (fc — 1), where fc is the number of different 
conditions included in the experiment.

The corrected F c is larger than themncorrected F c. This has the effect of 
requiring a larger difference between means for rejection of H 0 in the a 
posteriori comparison.

Example of the Scheffe corrected F

Consider the a posteriori test of example (c) for which the observed value of 
F  is calculated to be 5.593:

(c) None differs from the mean of Partial and Complete.

It is necessary to use (2,21) rather than (1,21) degrees of freedom in looking 
up the critical F. This gives 3.47, at the 0.05 level of significance, which 
value is then multiplied by (3 — 1) to give (2)(3.47) =  6.94.

The observed F value of 5.593 does not exceed the Scheffe corrected F 
and hence the decision would be not to reject H 0. This can be com­
pared with the decision to reject H0 in the a priori uncorrected test. 
(Note that a posteriori tests are not available for within-subjects experi­
ments.)

8.3.3 Newman-Keuls test

This test is appropriate for a posteriori comparisons of two conditions from 
among the set of conditions that make up a factor. A full discussion of it 
can be found in Winer et al (1991).

The procedure differs from that for the Scheffe test. The a posteriori test 
of the comparison of None with Partial which now follows serves to 
illustrate the steps of the Newman-Keuls procedure.

Stage 1: Set out the means for all conditions in order of value.

38.75 47.00 60.63
None Complete Partial

Stage 2: Note the number of steps apart of the two means for which an a 
posteriori comparison is required (adjacent = 1 step, etc.).

None to Partial = 2 steps

The number of steps plus one is needed in using the tables of Studentized 
range in Appendix F. There, r represents the number of steps plus one (see 
Stage 4).
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Stage 3: Calculate 
Mean! —Mean2

q (MS„I0C/n)112
where n is the number of measurements at each condition, Meanx and 
Mean2 are the two means and M SerroT9 together with its df, is taken from 
the general analysis of variance F-test. Here,

60.63-38.75

q is the test statistic whose value must exceed a critical q (represented as qc) 
from the Studentized range table in Appendix F in order that H 0 can be 
rejected.

Stage 4: Compare with critical q from tables (r =  3, d f— 21):

qc = 3.58 at 0.05 significance level 
4.64 at 0.01 significance level

Hence we can reject H 0 at the 0.05 level of significance as an a posteriori 
test.

Note: since direction is always known in a posteriori tests, no further 
adjustment is required for a directional test. Where it is appropriate, a 
directional test is assumed. Note also that a posteriori tests are not 
available for within-subjects experiments.

8.4 OVERVIEW OF DECISIONS FOR CONTRASTS 
AND COMPARISONS OF MEANS

Figure 8.2 is a decision chart. The researcher should start with the box 
labelled ‘type of comparison’ at the top. This is where the decision is made 
between a priori and a posteriori. For the a posteriori route the next

q (216.42/8)1/2 42U

Type of comparison

Uncorrected
F-test

Complexity of comparisons

Newman-Keuls
test

Scheffe
corrected
F-test

Fig. 8.2 Overview of decisions for contrasts and comparisons of means.
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decision is pair-wise versus multi-mean. Multi-mean refers to a comparison 
or trend involving three or more means.

8.5 EXERCISES

8.1 The number of words recalled from a text was recorded for subjects 
who had spent various lengths of time studying it. One hundred and 
seventy five subjects were randomly allocated to five different study times 
resulting in five groups of 35 subjects.

The study times were 5, 10, 15, 20 and 25 minutes.
The mean numbers of words recalled were 9.2, 16.8, 24.0, 24.5 and 21.4, 

respectively.
The sum of squares between the groups was 5660.5, and within the 

groups was 110939.

(a) Carry out an a priori test for a trend in the means of the groups in the 
direction of greater numbers of words recalled the longer the study 
time.

(b) Test the comparison, a priori, of the 5-minute group with the mean of 
all other groups.

(c) Test the comparison, a posteriori, of the means of the groups with study 
time 10 minutes or less with those groups with study times 15 minutes 
or more.

(d) Test the hypothesis, a posteriori, that the mean number of words 
recalled for the 5-minute groups is less than the mean for the 25-minute 
group.



9 Power and sensitivity in 
design decisions

9.1 INTRODUCTION

In an randomized experiment some of the variation in the dependent 
variable may be explainable by a variable other than those that are the 
main focus of attention. Such a variable is usually known as a covariate. A 
covariate can be incorporated into an analysis to improve the efficiency of 
the design. This may mean that the same probability of obtaining a 
significant result can be achieved with fewer subjects.

The cost of obtaining the covariate measurements may be prohibitively 
high. An example of a situation where this may be so is where the proposed 
covariate is an IQ score based on a 45-minute individual test session. The 
analysis technique was introduced and covered in detail for the continuous 
covariate in section 2.4 and Chapter 7, respectively. The category covariate 
was introduced in the context of the two-factor design in section 2.3.2. The 
two-factor design was dealt with in detail in Chapter 6.

Decision-making for the case of a continuous covariate is dealt with in 
section 9.2 and the parallel situation of the category-type covariate con­
sidered for use as a blocking factor is dealt with in section 9.3.

The choice of sample size is discussed for the single factor between- 
subjects design in section 9.4.

Finally, the choice of within-subjects or between-subjects design is dealt 
with in section 9.5.

9.2 SENSITIVITY AND EFFICIENCY GAINS FROM A 
CONTINUOUS COVARIATE

The example of the drugs experiment on rats introduced in section 2.4 and 
continued in Chapter 7 is used here to illustrate the decision of whether or 
not to use a continuous covariate in a single factor between-subjects 
randomized experiment. Two versions are compared: one with, and one 
without, the covariate.

The sensitivity formula is given in section 3.9. It is:

. . .  n sensitivity = —— 
MS
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Here n is the number of subjects experiencing each condition (or, more 
generally, the number of measurements obtained under each condition) and 
MS is the within-groups mean square (or other estimate of the between- 
subjects variance). This gives sensitivity values as set out in Table 9.1.

Since the numbers of subjects per group were identical in the two 
versions of the analysis, the sensitivities reflect the variance estimates. Thus 
the adjusted analysis is 0.0210/0.0091 = 2.308 times as sensitive as the 
unadjusted analysis.

Table 9.1 Sensitivity in the two versions

n MS Sensitivity

Unadjusted 9 991 0.0091
Adjusted 9 429.5 0.0210

The comparison of sensitivity is useful if the covariate measurements are 
freely available to the experimenter. However, if account needs to be taken 
of the cost of obtaining the covariate measurements, the comparison of 
efficiencies is required.

To illustrate the calculation of efficiency, assumptions need to be made 
about the costs of setting up and running the experiment. The costs likely 
to be encountered were identified in section 3.10. The same cost headings 
are reproduced in Table 9.2 with reasonable but fictitious amounts of time 
in hours for each version of the experiment.

Table 9.2 Costs of the rats’ pulse rates experiment

Unadjusted Adjusted

Cost of finding subjects 18 @ 0.5 9 9
Cost of setting up conditions 15 15
Cost of taking subjects 18 @ 1.0 18 18

through the conditions
Cost of obtaining 18 @ 0.25 0 4.5

covariate scores

Total cost (hours) 42 46.5

The efficiency is calculated using the formula presented in section 3.10 
and reproduced here.

~  . sensitivity
efficiency= ----------- -

cost
This leads to the values for efficiency shown in Table 9.3.

Table 9.3 Sensitivity and efficiency in the two versions

n MS Sensitivity Cost Efficiency

Unadjusted 9 991 0.0091 42 0.000217
Adjusted 9 429.5 0.0210 46.5 0.000452
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The comparison of alternative designs is best carried out in terms of their 
relative efficiency or R.E.

_ . . _  . efficiency of adjusted design 0.000452Relative efficiency=-^^------z  ----------
efficiency of unadjusted design 0.000217

= 2.083

This means that the adjusted design is more than twice as efficient as the 
unadjusted design.

The relative sensitivity of 2.308, can be compared to the relative efficiency 
of 2.083. The benefit of the adjusted relative to the unadjusted design is 
more marked in terms of relative sensitivity than in terms of relative 
efficiency. This is due to having taken account of the cost of the covariate 
in the efficiency calculation.

Simple pilot study and rule of thumb

In the event that a very simple rule of thumb is required, this would be 
expressed in terms of the size of the relationship of the covariate to the 
dependent variable. If at least 30% of the variation in the dependent 
variable is explained by the proposed covariate then it should be included 
in the experiment.

A simple pilot study would make possible the calculation of the correla­
tion (r) of the covariate with the dependent variable. If r2 exceeds 0.30 (i.e. if 
r exceeds 0.55) the rule of thumb would indicate a decision to include the 
covariate. Note that r2 is the proportion of SS of the d.v. explained by the 
covariate.

In the rats experiment discussed above, the weights of the rats explain 
9070/16 357 or 55% of the variation in the pulse rates. This is a clear 
indication under the rule of thumb that the weights should be made use of 
in the experiment.

9.3 SENSITIVITY AND EFFICIENCY GAINS FROM A 
CATEGORY COVARIATE

An example is used to illustrate the making of the decision to use or not use 
a category-type covariate as a blocking factor in a single-factor between- 
subjects randomized experiment. Reference could usefully be made to the 
discussion of the randomized block design in section 2.3.2.

9.3.1 Example

A researcher was designing an experiment to compare the effectiveness of 
three instruction techniques. This would require a single-factor between- 
subjects design with random allocation of subjects to conditions.

A simple pass/fail ability test was available which was under consider­
ation as a way of grouping subjects according to ability. This would be
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used as a blocking factor. If it were used, the design would become a 
randomized block with a sample of pass subjects randomly allocated to the 
three instruction techniques and a parallel sample of fail subjects likewise 
randomly allocated to the three techniques.

Figure 9.1 represents the layout of the randomized block design. The 
dependent variable is a score on a test of recall of the material taught.

techniques 

T 1 T2 T3

pass

fail

Fig. 9.1 Layout diagram for single-factor design with blocking.

There is a time cost associated with the use of the ability test. It takes 15 
minutes per person tested. A decision has to be made on whether it is worth 
the time cost involved in using the ability test. A simple pilot study will 
provide enough information to enable the rule of thumb to be applied. A 
full pilot study will provide enough information to enable relative efficiency 
to be considered. Both approaches are illustrated here.

The simple pilot study estimated the strength of the effect of passing or 
failing the test on the individuals’ scores on the dependent variable.

Simple pilot study and rule of thumb

If at least 30% of the variation in the dependent variable is explained by the 
proposed blocking factor then it should be included in the experiment.

The simple pilot study consisted of exposing 10 each of pass and fail 
subjects to one of the training conditions and then administering the recall 
test. The subjects who had passed the ability test obtained higher scores on 
the recall test. The analysis of variance summary table is set out in Table 
9.4. This indicates that approximately 19% (i.e. 820/4320) of the total 
variation in scores is explained by pass or fail on the ability test. As a rule 
of thumb, if no other information were available, 30% could be regarded as 
the level at which a decision would be made to include ability in the design 
of the experiment. By this rule the ability test would not be used.

Table 9.4 Analysis of variance of simple
pilot study

Source df SS

Ability 1 820
Within-groups 18 3500

Total 19 4320
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Full pilot study and analysis of sensitivity and efficiency

By running a full pilot study which is a small scale version of the complete 
study it is possible to obtain information that leads to a decision about 
inclusion of the blocking factor in the complete study on the basis of 
relative efficiency.

The full pilot study was run with six subjects allocated to each combina­
tion of training technique in each ability group. This meant that 36 subjects 
were involved in all. The resulting analysis of variance summary table is set 
out in Table 9.5

Table 9.5 Analysis of the variance of the full pilot 
study

Source df SS MS

Techniques 2 618
Ability 1 889
Interaction 2 490
Within-groups 30 2323 77.4

Total 35 4320

If ability were to be ignored, the SS for ability and for interaction and the 
associated degrees of freedom would be pooled into the within-groups 
terms to give the summary in Table 9.6.

Table 9.6 ANOVA of full pilot study ignoring 
blocking factor

Source df SS MS

Techniques 2 618
Within-groups 33 3702 112.2

Total 35 4320

Comparison of sensitivities

The comparison of sensitivities amounts to a comparison of 12/112.2 with 
12/77.4, i.e. 0.1069 compared to 0.1550. Sensitivity is 1.45 times higher in 
the version which includes the blocking factor. If there were no costs 
associated with the use of the blocking factor the higher sensitivity would 
be decisive. However, in this case there is 15 minutes per ability test to be 
taken into account.

Comparison of efficiencies

The comparison of efficiencies requires information on costs of setting up 
the research, obtaining subjects and carrying out all tests and measure­
ments. Suppose costs were as set out in Table 9.7. The efficiency is
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Table 9.7 Costs in hours

Unadjusted Adjusted

Cost of finding subjects 36 @ 0.25 
Cost of setting up experiment 
Cost of taking subjects 36 @ 1.25 

through the conditions 
and completing d.v. tests 

Cost of obtaining 36 @ 0.25 
covariate scores

9
10
45

0

9
10
45

9

Total cost (hours) 64 73

calculated using the formula presented in section 3.10 and reproduced 
here:

~ . sensitivity
efficiency= ----------- -

cost

This gives efficiencies as 0.1069/64 and 0.1550/73 for the versions with and 
without the covariate. The results are summarized in Table 9.8.

Table 9.8 Summary of sensitivity and efficiency

n MS Sensitivity Cost Efficiency

Not blocked 12 112.2 0.1069 
Blocked 12 77.4 0.1550

64
73

0.001671
0.002123

The comparison of alternative designs is best carried out in terms of their 
relative efficiency or R.E.:

„  . . „  . efficiency of blocked design 0.0021238
Relative efficiency= -r—:— ----- ;-------1 — -r—z—:— ■

efficiency of standard design 0.0016711

=  1.27

The relative sensitivity of 1.45 has become a relative efficiency of 1.27. This 
moderation of the benefit of the blocked relative to the not-blocked design 
is due to inclusion of the cost of the covariate in the efficiency calculation. 
This represents a clear decision to include the blocking factor. This 
contrasts with the decision obtained from the rule o f thumb approach.

9.4 CHOICE OF SAMPLE SIZE

9.4.1 Introduction

Choice of sample size is often the most difficult part of the planning of an 
experiment. The feasibility of a project within certain time and cost 
constraints depends on the number of subjects required. The discussion is 
most usefully conducted in terms of power.

Power was defined in section 3.8 as the probability that in running
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the experiment, the experimenter will not make a type II error. This is 
the error of deciding not to reject a false null hypothesis. Power is 
increased when the sample size is increased or when the heterogeneity of 
the sample is effectively reduced either through grouping or blocking of 
subjects (section 9.3) or through adjustment based on a covariate (section
9.2).

If no covariates are available then the aim is to use a sample size which is 
large enough to provide adequate power but not unnecessarily large. It will 
be seen that increasing the sample size beyond a certain optimal level leads 
to minimal increase in power and is uneconomic.

9.4.2 Approximate sample size determination
The discussions on variance of means in section 3.2 and on confidence 
intervals in section 3.4 provide a simple way of looking at sample size. 
There are two requirements:

1. An estimate of the standard deviation or variance of the intended 
dependent variable in the population.

2. A view as to the smallest difference among the means that is of practical 
importance. The experiment will be designed to ‘detect’ differences of 
this size or larger.

If the smallest practical difference between a pair of means is represented by 
spd (the smallest practical difference between any two of the three groups 
whose comparison concerns the experimenter) and if variance stands for the 
variance of the dependent variable in a sample of subjects from the 
population, then n, the minimum number of subjects per group, is given by 
the formula:

n = (2)2( 1.96)2(variance)/spd2 
=  (15.3664) (variance)/spd2

(Note that the variance is equivalent to the standard deviation squared, 
(s.d.)2, and to the within-groups mean square.)

This formula can be relied on to give a power above 0.70 if at least five 
subjects are used in each condition being compared and if the 0.05 
significance level is used for the test.

The rationale for this approximation is set out in Appendix E. Intuitively 
it can be justified as follows. The approximate 95% confidence interval 
about a sample mean is +(1.96)(variance/n)1/2. From this it follows that
(2)(1.96)(variance/n)1/2 is the distance apart of means whose confidence 
intervals touch without overlapping. The approximate method chooses a 
sample size which leads to confidence intervals small enough to touch 
without overlapping when the means differ by the spd.

It is evident from this formula that n varies directly with the variance and 
inversely with the square of spd. This means that the smaller the variance 
(i.e. the more homogeneous the population or the less the random error in 
the measurements) the smaller the number of subjects required. Also, the 
larger the differences among the means that are regarded as worthwhile the 
smaller is the number of subjects required.
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Numerical example

Consider the gerbil experiment in section 4.3.1. Suppose spd was thought to 
be 10 and the variance, based on measurements of the dependent variable 
on a sample of gerbils, was 200 (we know that the estimate from the 
ANOVA summary table in section 4.4.2 is 216). This leads to:

n = (15.3664)(200)/100 
=  30 (approximately)

This implies that approximately 90 gerbils would be needed, 30 per group.

9.4.3 Exact sample size and power determination

Introduction

A more accurate approach is available using tables of the non-central F. 
Much the same information is required. The procedure is best described 
through the use of an example.

Numerical example for power and sample size

An experiment is to be run with one control and two interference condi­
tions. The dependent variable is response time in milliseconds. The response 
times are expected to be about 9 milliseconds longer in the two interference 
conditions. The standard deviation is known to be about 9.5 milliseconds in 
the control condition.

Step 1: Express smallest practical differences among means as deviations.
The means under influence of the conditions to be included in the 

experiment need to be expressed as deviations (section 2.1). Here the 
required deviations are (—6, +3, +3), corresponding to the control 
and two interference conditions, respectively, in order to accommodate 
the 9 millisecond difference. The corresponding bar chart is shown in Fig.
9.2.
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Fig. 9.2 Mean response times for a control (C) and two interference (1-1, 1-2) 
conditions. Arbitrary overall mean = 24.
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Step 2: Obtain estimate of variance.
This can be calculated directly or from the square of the standard 

deviation from a sample or, using previous results, may be taken as the 
mean square within-groups from an ANOVA.

Here we take

variance =  (standard deviation)2 
=  9.52 
= 90.25

Step 3: Calculate </>.
Do this for a range of values of n, the number of subjects in any one 

condition. The formula for </> is

y (fc)(variance) )

where k is the number of conditions in the experiment and t l9 t2, etc. are 
the values of the deviations among the means.

Take values of n as follows: 4, 6, 10, 15, 20, 25, 30, 40, 50. For n = 4:

/4(62 + 32 + 32\ 1/2
0 V (3X90.25) )

= 0.893
The complete table of values of <j> is set out, with power values for 
significance level 0.05, in Table 9.9.

Table 9.9 Values of (j> and power for given values 
of n

Group size (n) 4> Power

4 0.893 0.20
6 1.09 0.31

10 1.41 0.53
15 1.73 0.76
20 2.00 0.88
25 2.23 0.94
30 2.45 0.98
40 2.82 0.995
50 3.16 1.000

Step 4: Look up the values of power.
This is done in the tables of non-central F in Appendix F. In the tables of 

non-central F, (1 —power) is tabulated according to:
(j> the non-centrality parameter
(fc— 1) the degrees of freedom between-groups
fc(n— 1) the degrees of freedom within-groups (n is the number of

subjects per group)
0.05 or 0.01 the significance level of the test
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The table value is the probability of a type II error rather than power. 
Power is obtained as (1- table value). 

Continuing the example of n = 4, 

</> =0.893 
(k-1) =2 
k(n-1) =9 

This gives 0.80 and 0.94 for significance levels 0.05 and 0.01, respectively. 
(Note: interpolation was used within the table.) Taking these table values 
away from 1 gives power values of 0.20 and 0.06 respectively. 

Step 5: Plot a graph. 
The graph should be drawn with sample size on the horizontal axis and 

power on the vertical axis. Smooth the curve appropriately. This is shown 
in Fig. 9.3. It enables the researcher to read off the power for any value of 
the sample size and for either 0.05 or 0.01 significance level. 
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Fig. 9.3 Power versus sample size for significance levels 0.05 and 0.01. 

Interpretation of sample size and power graph 
The gradual flattening of the graph as sample size increases indicates the 
diminishing returns referred to above. A power of at least 0.7 is usually 
required. However, the individual circumstances will involve a variety of 
factors contributing to the final decision. For this reason it is worthwhile 
plotting the full graph. 

9.5 CHOICE OF WITHIN- OR BETWEEN-SUBJECTS DESIGN 

9.5.1 Introduction 

This is based on the relative magnitude of the reliability MS and between­
subjects MS, together with the relative costs of finding and re-testing 
sample subjects. The within-subjects or repeated measures design is almost 
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always more efficient than the between-subjects or independent groups 
design.

9.5.2 Numerical example of relative efficiency of between- and 
within-subjects design

Consider the dowel balancing experiment described in section 5.4.1 The 
analysis of variance summary table (Table 5.4) shows the reliability and 
between-subjects MSs to be 4 and 20 respectively.

This implies that if four different subjects were used for each of the three 
conditions instead of the same four used repeatedly, the sensitivities would 
be 4/4 and 4/20, respectively. This indicates that the repeated measures 
design is 5.0 times as sensitive as the independent groups version.

Since obtaining new samples of subjects is almost always more expensive 
than having the original sample take part several times and since the 
reliability MS is almost certain to be smaller than the between-subjects MS, 
the usual rule is to use the repeated measures design whenever possible.

The main circumstance in which a new sample of subjects for each 
condition could lead to better efficiency would be if subjects needed a long 
rest between taking part in each condition.

9.5.3 Characteristics prohibiting use of within-subjects design

Introduction

Various restrictions apply to whether a factor can be within-subjects. The 
main points are summarized here:

1. Factors whose levels represent characteristics of the subjects which 
endure beyond the time-scale of the research (such as sex) are known as 
intrinsic. Intrinsic factors must be between-subjects.

2. Factors whose levels represent extrinsic conditions but which have a 
long-term effect on the subjects must be between-subjects. An example 
is where the conditions are alternative methods of teaching a given body 
of material. The effect of learning the material is long-term.

3. The process of measuring the response or dependent variable may have 
a long-term effect on the individual subject. This means the measure­
ment can only be made once and implies use of a between-subjects 
design. An example would be a test of performance on which individuals 
improve markedly with practice.

If none of the above restrictions applies and no problems arise due to 
subject tiredness or boredom or other confounding effects, then the 
within-subjects factor is likely to be the most appropriate design.

9.5.4 Threats to validity of within-subjects designs

Validity is the extent to which the observed effect on the dependent 
variable is caused only by the values of the independent variable that define
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the conditions to be compared. Points that need to be taken into account 
are:

(a) Maturation or development of the subjects over the period of the 
experiment.

(b) Practice effect with the measuring instrument and increased familiarity 
with the situation.

(c) One condition influencing another (carry-over effect).
(d) Systematic drop-out (certain types of individuals inclined to drop out 

at certain stages).
(e) Regression to the mean. If individuals are selected according to their 

levels on a variable which is related (but not perfectly) to the depend­
ent variable then at successive measurements the scores will be closer 
to the mean of the population from which the individuals were 
selected.

Most of the problems (a) to (e) can be reduced by randomizing the order 
in which subjects are exposed to the various conditions.

9.6 SUMMARY OF INFLUENCES ON DESIGN DECISIONS

(a) Between-subjects with versus without continuous covariate 
Favour covariate if:
•  Correlation of covariate with dependent variable is large.
•  Cost of covariate measure is low relative to other costs.

(b) Between-subjects with versus without category-type blocking factor 
Favour blocking factor if:
•  Effect of blocking factor on dependent variable is large.
•  Cost of grouping subjects by categories of the blocking factor is 

small relative to other costs.

(c) Continuous covariate versus category covariate 
Favour continuous covariate if:
•  Correlation of covariate with dependent variable is above 0.55.
•  Inconvenient to group subjects before running experiment.
•  Conditions x blocks interaction not of interest.
•  ANCOVA analysis interpretation not feared for its complexity of 

interpretation.
•  Assumptions for ANCOVA model are satisfied.

(d) Within- versus between-subjects 
Favour within-subjects if:
•  No logical or logistic objection to subjects being used repeatedly.
•  Reliability MS is small relative to the between-subjects MS.
•  Cost of obtaining sample subjects is high relative to the cost of single 

measurement on dependent variable.
•  Number of conditions to be compared is large.
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9.7 EXERCISES

9.1 Sixteen randomly selected subjects are allocated at random, four to each 
of four conditions: counting, rhyming, adjective and imagery. The depend­
ent variable is the number of words recalled from a list. The age of each 
subject is recorded and is used as a continuous covariate with the aim of 
increasing the power of the test of significance of conditions in the ANOVA. 

The SS s unadjusted and adjusted for age are in the following table:

Source SS SSadj

Conditions 101 98
(Covariate — 47)
Residual 154 110

Total 255

Assume that it takes 0.25 hours to take each subject through the experi­
ment, 0.5 hours to find each subject and 4 hours set-up time. Assume 
further that an additional 3 hours work is involved in carrying out an 
ANCOVA analysis which makes use of the subjects’ ages additional to the 
work that would be involved in the ordinary ANOVA which ignores ages.

(a) Apply the three methods for comparing the versions of the design and 
analysis with and without use of the continuous covariate age:

A: rule of thumb 
B: compare sensitivities 
C: compare efficiencies

(b) Which of the three methods in (a) gives the strongest support for the 
use of age as a covariate?

9.2 A researcher who was designing an experiment to compare the effec­
tiveness of three instruction techniques could not decide how to make 
use of the subjects’ intelligence scores, which were available at no extra cost 
and which were correlated with the scores on the dependent variable. The 
dependent variable was a score on a test of recall of the material taught.

The researcher conducted the experiment as a 2 x 3 randomized block 
design with intelligence as a two-level blocking factor (higher, lower) and 
with four subjects per cell.

Because of indecision the experimenter carried out two analyses. The first 
analysis was the appropriate one for the randomized block:

Source d f SS

Techniques 2 618
Blocks 1 889
Interaction 2 270
Residual 18 4044

Total 23 5821
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The second analysis ignored the blocking factor and assumed a one-factor 
design with intelligence as a continuous covariate. The following table 
shows the analysis of variance for techniques adjusted for the effect of 
intelligence:

Source d f SSadj
Techniques 2 590
Residual 20 1498

Total 22

(a) Complete the tests of significance for techniques for each analysis.
(b) Calculate the relative efficiency of the two approaches making clear 

which is the more efficient.
(c) Give your view of how the researcher should have proceeded in this 

case and outline the relative advantages and disadvantages, in general, 
of the two approaches.

9.3 A hospital’s clinical staff agreed to run a trial to evaluate the effective­
ness of individual therapy on schizophrenia.

Subjects would be randomly allocated to either the therapy or the 
control group. The dependent variable would be the rating on a personality 
scale. The trial would run for a year. At the end of this time a difference, on 
average, of 20 points on the personality scale, between the two groups, was 
the minimum that could be considered clinically useful.

(a) If the mean square within groups is known to be about 200 and a 
significance level of 0.05 was required, obtain an approximate estimate 
of the required sample size using the formula in section 9.4.2.

(b) Investigate graphically the relationship between power and number of 
subjects used in the trial supposing a significance level of 0.01 was to be 
used.

(c) How many subjects are needed to give a power of 50% when a 0.01 
significance level is used?
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10.1 INTRODUCTION

Research can lead to conclusions about one variable causing an effect on 
another variable. The requirement for this is that the researcher varies the 
values of the one variable and in doing so obtains an associated effect in 
the other variable. This is the classical experimental research method. Part 
One was concerned with this approach.

A variable consisting of conditions that can be freely varied by an 
experimenter and experienced by an individual who is a subject of the 
research is known as extrinsic. Part One was mainly concerned with 
experiments designed to test the existence of a causal effect of a category 
extrinsic variable on a continuous dependent variable.

An example was the gerbil experiment reported in Chapter 4. In this the 
researcher determined the degree of interruption to feeding experienced by 
each gerbil and looked for an effect on the number of times the gerbil 
returned to the feeding site. The variation of the degree of interruption was 
achieved by random allocation of experimental conditions to gerbils.

The uncertainty introduced to the situation by the presence of individual 
differences between the gerbils, provided it is of a random nature, is dealt 
with by the hypothesis test strategy.

In Part Two consideration is given to research designs in situations in 
which the researcher lacks the control required for a randomized labora- 
tory-style experiment. One reason may be because intrinsic variables are 
the focus of interest. Intrinsic variables are relatively permanent character­
istics of individuals, such as their sex or the number of children they have 
borne. Another reason may be that random allocation is not easily 
implemented outside the laboratory. The pressures of life in commerce, 
industry, institutions and the home represent the main area of difficulty.

Random allocation of individuals to categories of an extrinsic variable 
is not always possible. The researcher may have to allocate the diffe­
rent conditions to pre-existing groups defined by, for example, attending 
the same health centre, being pupils of the same school class or working 
on the same production line. This results in what is called a quasi- 
experiment.

The quasi-experiment has interpretation difficulties due to the differences 
between conditions being confounded with differences between health 
centres, classes or production lines and due to group differences in the
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characteristics of the individuals. Section 10.3 deals with techniques for 
removing differences between these pre-existing groups by adjustment.

Equal numbers of individual subjects in each condition or combination 
of conditions will not always be possible in real-world research. This 
problem can arise in a randomized experiment if one of the factors is an 
intrinsic blocking factor. For example, in an experiment to compare 
treatments for pre-menstrual tension it may be required to allocate women 
at random to one of three treatments. Suppose parity (no children, one 
child or 2+  children) is to be used as a blocking factor. It may be difficult 
to arrange to have the same number of women in each group if there are 
fewer women with 2+  children willing to take part. Also, the pattern of 
drop-out may differ between the groups.

The same problem of unequal numbers of subjects in groups is an 
inevitable part of research in which there is no random allocation or 
intervention by the researcher. This is the area of observational research or 
survey research, in which individuals are identified or classified according to 
levels of the intrinsic independent variables and measured for a continuous 
score on the dependent variable. For example, consider a survey intended to 
study the effects of smoker status (non-smoker, ex-smoker, current smoker) 
and family history of circulation problems (yes, no) on blood pressure.

This is a two-factor independent groups design with blood pressure the 
continuous scaled dependent variable. It is analysed by analysis of variance. 
However, it is almost certain that there will be different numbers of 
individuals classified into each of the six cells according to their categories of 
the two independent variables. The analysis of variance technique described 
for the two-factor design in Chapter 6 will not work in this situation.

Unequal numbers leads to what is called an unbalanced design or 
non-orthogonal design. There are difficulties of interpretation as interdepen­
dencies are present between the ‘independent’ variables. Section 10.2 deals 
with this.

10.2 TWO-FACTOR UNBALANCED DESIGN

10.2.1 Introduction

Consider the example referred to in section 10.1 of a survey of systolic blood 
pressure (BP) of individuals classified according to smoking status (status) 
and family history of circulation and heart problems (history). This is a 2 x 3 
independent groups design along the pattern of the machining example in 
Chapter 6. The one important difference is that the numbers of individuals in 
the cells are not controlled to be the same throughout. Rather, they reflect the 
frequencies of occurrence in the population of individuals with particular 
combinations of the intrinsic factors, status and history.

If this study had been contrived to have identical numbers in the cells, 
the marginal means for status would have described the effect of smoking 
on blood pressure without any confounding effect of family history. This 
confounding effect of history would have been removed in the design of the
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study. Unequal distributions of family history of circulation problems in 
the smoker status groups could not then serve as a possible alternative 
explanation of an observed relationship between smoking and blood 
pressure.

Analysis of the unbalanced design aims to remove confounding effects at 
the analysis stage that could, in principle, have been removed at the design 
stage.

The numbers of individuals in each cell and the mean BP are displayed in 
Table 10.1. The frequencies vary considerably from cell to cell. They range 
from 4 to 8; a factor of two. To continue sampling until there were enough 
subjects to provide 8 for each cell would probably require finding a further 38 
subjects. Twenty-eight of these would have to be discarded. Most researchers 
prefer to use an analysis technique that copes with the unbalanced numbers.

The full data for the 38 individuals are presented in Table 10.2.

Table 10.1 Means of systolic blood pressure

Smoker status

Non Ex Current

Family n — 1 n =  6 n — 1
history present 126.57 121.67 131.57

8 4 6
absent 111.75 108.25 128.17

Table 10.2 Blood pressure, family history and smoker 
status

Smoker status

Non Ex Current

Family
history
present

Family
history
absent

125 114 135
156 107 120
103 134 123
129 140 113
110 120 165
128 115 145
135 120
114 110 140
110 128 125
91 105 123

136 90 108
105 113
125 160
103
110

Two issues arise in connection with this type of design which lead to its 
exclusion from introductory courses in statistics. They are the estimation of 
the row and column marginal means and the tests of significance. These 
will be dealt with in sections 10.2.2-10.2.4.
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10.2.2. Estimation of row and column marginal means

If the sampling of the blood pressure survey had been so arranged that 
there were equal numbers of subjects in the six cells then the marginal row 
and column means would be expected to have the values shown in Table
10.3. That is, they would be the means of the means in the corresponding 
row or column. These are called the unweighted means. The unweighted 
means are very easily calculated by hand. For example, in the first column, 
119.16 is the mean of 126.57 and 111.75.

Table 10.3 The unweighted marginal means

Smoker status

Non Ex Current

Family 7 6 7
history Yes 126.57 121.67 131.57 126.60

8 4 6
No 111.75 108.25 128.17 116.06

119.16 114.96 129.87

The column marginal means 119.16, 114.96 and 129.87 are the mean 
blood pressures for the three categories of smoker status adjusted for the 
effects of family history. Likewise 126.60 and 116.06 are the mean blood 
pressures for the two categories of family history adjusted for the effects of 
smoker status.

If family history was ignored, the mean blood pressures for the three 
smoker status categories, based respectively on 15, 10 and 13 individuals, 
would be calculated as 118.67, 116.30 and 130.00. These are the weighted 
means. The name refers to the fact that they are means weighted for the 
numbers in the cells. They can be obtained as averages of all blood 
pressures in the appropriate category or from the cell means weighted by 
the frequencies. The weighted mean of the first column is obtained from the 
cell means as follows:

weighted m e a n 8.67
7 +  8

The weighted mean blood pressures for the categories of family history 
are 126.85 and 116.44 based on 20 and 18 individuals respectively. The 
same formula is illustrated for the first of these:

weighted m e a n - ™ 26- ^ » ^ ^ P ) ( 1 3 h g , 12685

The weighted means could present a misleading picture if family history 
had a large effect on blood pressure and disproportionate numbers with 
positive family history were present in the three groups. The unweighted 
means are usually more appropriate. They are printed out under the names 
unweighted means or adjusted means by computer programs that provide
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the unique or Type III sums of squares. (The sums of squares are discussed 
in section 10.2.3.)

No problem arises for the interaction. This is because it is described by 
the individual cell means. No adjustment is required.

10.2.3 Sequential and unique sums of squares and Venn diagrams

Unequal numbers of individuals in the cells results in interdependence 
among the independent variables. This requires the calculation of special 
types of sums of squares which facilitate interpretation and significance 
tests.

The statistical computer package will usually offer two types of sums of 
squares. They are the sequential sums of squares, also known as Type I sums 
of squares, and the unique sums of squares, also known as Type III sums of 
squares. These are best understood with the aid of a Venn diagram.

A Venn diagram is a rectangle representing the total sum of squares of 
the dependent variable. Regions of the square are marked out with circles 
to indicate portions of the total sum of squares explained by certain 
independent variables. In other words, the Venn diagram shows how the 
‘cake’ is divided up and how much remains unallocated.

Several important concepts related to sums of squares (SSs) explained by 
interdependent independent variables can be represented by the Venn 
diagram. They are:

Sequential
Synergy
Unique
Adjusted

Sequential (sequential sums of squares)

This describes an analysis approach in which the independent variables 
(i.v.s) are used to explain the SS of the dependent variable (d.v.) in a 
particular sequence.

Figure 10.1(a) illustrates this for the sequence A then B, where A and B 
stand for any two factors. A is given the first bite at the ca1 e. It explains a 
portion of the SS of the d.v. (Fig. 10.1(al)).

In Fig. 10.1(a2), factor B, a second i.v., is included in the model. Factor B 
has the second bite at the cake. B explains as much as possible of the SS of 
the d.v. not already explained by A.

Note that B is shown overlapping A. This overlap region represents 
a portion of the variance of the d.v. explainable by either A or B. This 
means that one i.v., in the presence of the other i.v., explains less than 
if it were alone in the model. Overlap means that together A and B explain 
less of the variation of the d.v. than the sum of what each can explain 
alone.

The amount of SS explained by a factor therefore depends on the 
sequence in which the factors are included in the model.



Fig. 10.1. Variance explained by interdependent variables A and B.
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Fig. 10.1. Variance explained by interdependent variables A and B. 
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Suppose the order were reversed as in Fig. 10.1(b). This time B commen­
ces by explaining as much as possible. A follows, explaining as much as 
possible of what is not already explained by B.

Synergy (synergic sums of squares)

Sometimes interdependent factors A and B have a synergic relationship. 
This means that together they explain more of the variation of the d.v. than 
the sum of what each can explain alone. In this case the overlap on the 
Venn diagram is replaced by a concave region called the synergy. (The 
word ‘synergy’ is not normally used to refer to this concept, although its 
meaning exactly represents it.)

This is illustrated in Fig. 10.1(c). A enters first. The circular region 
labelled A represents the SS explained by A. B follows. The SS explained 
additionally by B is represented by the circular region labelled B together 
with the synergy.

Likewise, Fig. 10.1(d) represents the synergic situation with B starting 
and A following. This time A brings with it the synergy.

Unique (unique sums of squares)

This refers to the sum of squares of the d.v. explained by an independent 
variable when it is last in the sequence. In the overlapped diagrams in Figs 
10.1(a2) and 10.1(b2) it is represented by the half-moon shaped parts of B and 
A respectively. In the synergy diagrams in Figs 10.1(c2) and 10.1(d2) it is 
represented by the circles for B and A, respectively, with synergy appended.

Adjusted (adjusted sums of squares)

The idea of adjustment was introduced in Chapter 7 and is further 
developed in section 10.3. The variation of the d.v. explained by factor A 
‘adjusted for the effect of factor B’ refers to the variation that factor A 
would explain if both it and the d.v. were adjusted to the values they would 
have if factor B was fixed at a particular value (for all subjects).

On the Venn diagram this is represented by removing the region 
representing the ‘partialled out’ variable. In Fig. 10.1 the shaded region 
represents the partialled out i.v. When the shaded region is removed the 
total is reduced.

In Fig. 10.1(a3) the adjusted SS for A is less than the unadjusted SS. 
However, since the total is also reduced, the amount explained by A as a 
proportion of the adjusted total may be higher or lower.

In Fig. 10.1(c3) the adjusted SS for A is greater than the unadjusted SS. 
Since the total is again reduced, the amount explained by A as a proportion 
of the adjusted total is higher.

Figures 10.1(b3) and 10.1(d3) illustrate the equivalent situation for B 
adjusted for the effect of A.

(Note that ‘effect of A with B partialled out’ is equivalent to ‘effect of A 
adjusted for the effect of B\)
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10.2.4 Tests of significance for the blood pressure example 

Test of smoker status 
Refer to the Venn diagram in F1g. 10.2(a). The Venn diagram was 
constructed from the results of two computer analyses for sequential or 
Type I sums of squares, one with the sequence status then history and one 
with the reverse order sequence. These provided the following results: 

Source 

Status 
History 
Interaction 
Residual 

ss 
1323.33 
1036.81 
252.78 

8473.84 

(a) Status and history. 

1323.33 

residual = 8473.84 

Source 

History 
Status 
Interaction 
Residual 

8 inter action 

ss 
1025.71 
1334.43 
252.78 

8473.84 

total = 11086.76 

(b) Status alone. (c) History alone. 

residual = 9763.43 residual = 1 0061.05 

total = 11 086.76 total = 11 086.76 
Fig. 10.2 Sums of squares of blood pressure explained by two variables. 
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Ignoring history, the test of status alone is based on the SS s in Fig. 
10.2(b), which are set out formally in Table 10.4. The degrees of freedom are 
found from the general rules set out in sections 4.5 and 6.6.

Table 10.4 Test of smoker status ignoring family history

Source df SS MS F

Status 2 1323.33 661.665 23T
Residual 35 9763.43 278.955

Total 37 11086.76
aF c = 3.28 at 0.05 

= 5.29 at 0.01

This is the analysis that would have been obtained if no information was 
available on history. It is not recommended if history data is available.

A more useful analysis is obtained by partialling out or adjusting for the 
effect of history. This can best be understood with aid of the Venn diagram 
in Fig. 10.2(a). The adjusted summary table is obtained by erasing the 
regions corresponding to history and interaction. This results in the sums of 
squares in Table 10.5. This presents a test of the adjusted or unweighted 
means and corresponds to the result that might have been obtained if there 
had been equal numbers in the cells.

Table 10.5 Test of smoker status adjusting for family history

Source 4/adj S S &dj MSadj Fadj

Status 2 1334.43 667.215 2.52a
Residual 32 8473.84 264.808

Total 34 9808.27
aF c = 3.32 at 0.05 

= 5.39 at 0.01

Similar analyses can be carried out for the test of significance of family 
history. The test ignoring smoker status would use SS s 1025.71 and
10061.05 with 1 and 36 degrees of freedom for history and residual, 
respectively, as shown in Fig. 10.2(c). The recommended test which adjusts 
for the effect of smoker status is in Table 10.6.

Note that the adjusted totals have different degrees of freedom in Tables
10.5 and 10.6. The unadjusted d f  for total is one less than the number of

Table 10.6 Test of family history adjusting for smoker status

Source 4/adj SSadj M Sadj F adj

History 1 1036.81 1036.81 3.92a
Residual 32 8473.84 264.808

Total 33 9510.65
aF c=4.17 at 0.05 

= 7.56 at 0.01
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d.v. measurements in the analysis. The degrees of freedom lost are those 
corresponding to the regions erased from the Venn diagram in the 
adjustment procedure. Thus in Table 10.5, one and two degrees of freedom 
are lost for the erasure of family - history and interaction, respectively. 
Likewise, in Table 10.6, two degrees of freedom are lost for both the erasure 
of smoker status and of interaction.

Test o f significance for interaction

No adjustment is required for interaction. The test is constructed in the 
same way as for the balanced design. The summary is in Table 10.7. This 
table is interesting because it is free of any adjustment or need for 
adjustment. It is orthogonal in the sense that the total SS is partitioned into 
non-overlapping components. This property is possessed by balanced 
designs (i.e. designs with identical numbers of subjects in the cells). Also, it 
is interesting to note that the combined main effects reaches statistical 
significance at the 0.05 level (p = 0.046).

Table 10.7 Test of interaction

Source df SS MS F

Main effects 3 2360.14 786.71 2.9T
Interaction 2 252.78 126.39 0.48b
Residual 32 8473.84 264.81

Total 37 11086.76

aF c=2.92 at 0.05 
bFc = 3.32 at 0.05

Thus the researcher could conclude, on the basis of this study, that the 
combined effect of family history and smoking status explains a significant 
portion of variation in systolic blood pressure. Note that ‘explains variation 
in’ is used rather than ‘causes’ as there has been no random allocation. 
Many possible confounding variables, such as age, have not been taken 
account of, either in the design or in the analysis.

10.2.5 Further example of the two-factor unbalanced design

To illustrate the procedures introduced above, an example follows whose 
sums of squares lead to an overlap of regions on the Venn diagram.

Two methods are to be compared for keeping pupils quiet during a 
private reading session. A reward method is used with one class and 
a punishment method with another, convenient, class in the same school. 
No random allocation was possible as for logistic reasons the pupils 
had to be taught in the same group at all times. This is a quasi­
experiment.

The number of times each child made a noise during the experimental 
lesson was recorded and used as the dependent variable.
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The scores and means for the two groups of children were:

Group Scores Mean

Reward 4 1 2  7 5 6 7 8 8 8 6 7 8  10 6.21
Punishment 3 2 4 3 1 4 6 3 8 8 4 8 5 4.54

The researcher was also interested in the effect of academic ability on the 
amount of noise made by pupils. The pupils had been previously categor­
ized into ability bands A, B and C. This second factor was therefore 
included at the analysis stage.

The scores are presented in Table 10.8, classified according to group and 
ability and with cell means. It is evident that there are more high ability 
band pupils (band A) in the punishment group. Ability might be the 
explanation of the lower noise level (4.53 compared to 6.21) rather than the 
method of class control.

Table 10.8 Data and means for the pupil noise example

Ability band

mean

Ability band

A B C A B C mean

Reward 4 7 8 Punishment 3 6 8
1 5 8 2 3 5
2 6 6 4 8

7 7 3 8
8 8 4 4

10 1

Means 2.33 6.60 7.83 6.21 Means 2.83 5.80 6.50 4.53

The unweighted means are:

A B C Reward Punishment

2.58 6.20 7.17 5.58 5.04

It is evident from an examination of the adjusted (unweighted) means 
(5.58 and 5.04) that almost all the difference in method of class control has 
been removed by the adjustment made for ability.

Obtaining the sums of squares

The sums of squares can be obtained from the results of an analysis of 
variance from a statistical computer package. It is recommended that they be 
transferred to a Venn diagram in order to clarify the situation. Differences in 
procedure and vocabulary between statistical packages easily lead to 
misunderstandings. The user who has difficulty constructing the Venn 
diagram is at risk of making an error of interpretation of the analysis of 
variance summary table provided by the package. Usually Type I (sequential) 
analyses need to be run twice with the main effects in different sequences.
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A single adjusted analysis sometimes makes it possible to omit the Venn 
diagram. Unfortunately, in the less good computer programs, it is not 
always clear what form of adjustment is being carried out. Only if Type III 
(or unique) is specified should the program be used. 

The Venn diagram 

The Venn diagram in Fig. 10.3 shows the large amount of overlap of the 
region representing method. This confirms that there is a large effect of 
adjustment on this variable. Ninety-two per cent of the variation explained 
by method is explainable by ability (17.43/18.93). 

G inttr action 
rtsidual = 50.83 

total= 164.52 

Fig. 10.3 Sums of squares for pupil noise. 

The tests of significance 

The three tests of significance for main effects and interaction follow in 
Tables 10.9 to 10.11. 

Table 10.9 Test of method adjusted for ability 

Source df.dj SSadJ MSadJ Fadj 

Method 1 1.50 1.50 0.62• 
Residual 21 50.83 2.42 

Total 22 52.33 

"F.=4.32 at 0.05 

Table 10.10 Test of ability adjusted for method 

Source df.dj SSadJ MSadJ Fadj 

Ability 2 91.49 45.75 18.90• 
Residual 21 50.83 2.420 

Total 23 142.32 

"F.= 5.79 at 0,01 



Confounding in one-variable non-randomized designs 113

Table 10.11 Test of interaction

Source df SS MS F

Main effects 3 110.42 36.81 15.21a
Interaction 2 3.27 1.635 0.68b
Residual 21 50.83 2.420

Total 26 164.52

aF c=4.88 at 0.01 
bFc = 3.49 at 0.05

Conclusions

Only the proportion of the variation in classroom noise explained by ability 
is significant. However, other variables not included in the analysis, such as 
age and sex, could possibly explain the relationship of ability with noise 
found in this study.

10.3 CONFOUNDING IN ONE-VARIABLE NON-RANDOMIZED 
DESIGNS

10.3.1 The confounding problem

Compare the randomized and non-randomized designs whose aim is to 
research the effect on a continuous dependent variable Z, of a category 
independent variable A with two levels (A, no A).

Figure 10.4 illustrates the design and results of the randomized version.
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Fig. 10.4 Design and results of a randomized experiment.

isIf the means of Z in the two groups are significantly different, A 
immediately established as having a causal influence on Z.

Suppose the true effect of A on Z is represented by deviations (+1, — 1) 
for (A, no A). This is represented in the bar chart in Fig. 10.4.

Figure 10.5 illustrates the design and results of the non-randomized 
version, in which the samples differ in the proportions of individuals with the
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Fig. 10.5 Design and results of a non-randomized experiment.

characteristic B. Seventy per cent of members of the sample given condition 
A also have B, whereas only 20% of those not given A have B.

B influences the value of Z. The true effect of B on Z is represented by 
deviations (+  3, — 3). It is supposed there is no interaction between A and B.

The combined effect of A and B, using the unweighted means approach 
discussed in section 10.2.1, is shown in the bar chart in Fig. 10.5. The effect 
of A has been greatly enhanced by the contribution of B.

B, distributed unevenly across the groups, could create an apparent effect 
of A even if, in reality, there were none. B is acting as a confounding variable.

Even if the means in the two groups are significantly different, A cannot 
be said to have a causal influence on Z because the two groups are known 
to differ in the proportion of sample members with characteristic B.

B is a confounding variable if it influences Z and is distributed unevenly 
across the two groups.

The confounding variable B can be controlled in the analysis if sub­
groups with and without B are analysed separately. The result of this is 
shown in Fig. 10.6. Note that the effect of A is shown correctly as ( +1, — 1) 
in both bar charts.
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No simple statement of the effect of A on Z can be made until allowance 
or adjustment has been made for the effect of B. The problem, stated 
another way, is one of validity. The apparent effect of the independent 
variable on the dependent variable is not valid. Validity can be restored, to 
some degree, if the effect of the confounding variable can be removed.

Another way of expressing this is to say that the effect of the confounding 
variable has to be partialled out of the relationship of the independent to the 
dependent variable. Different techniques need to be employed depending on 
the type, category or continuous, of each of the three variables involved.

Definition of a confounding variable

A confounding variable is one whose effect on the dependent variable (d.v.) 
could be mistaken for the effect of the independent variable (i.v.). It is a 
variable which co-varies with both the i.v. and the d.v.

A variable which has no direct (or main) effect on the d.v. may influence 
the relationship of the i.v. to the d.v.; such a variable would interact with 
the i.v. The discussion in this section deals with confounding variables 
which have main, rather than interaction, effects on the d.v.

10.3.2 Overview of the confounding variable situations

All four designs listed in Table 10.12 could be surveys. The arrangements 
with a category-independent variable (numbers 1 and 2) are likely also to 
arise from a quasi-experiment. Different levels of the independent variable 
would be assigned to pre-existing groups of individuals and an effect would 
be sought on the dependent variable.

Table 10.12 Confounding variables in four types of surveys and quasi-experiments

Types of variables for Type of confounding Analysis for
main relationship variable hypothesis test

-------------------------------------- and adjustment
i.v. d.v.

1 Category Continuous Continuous ANCOVA
2 Category Continuous Category Two-factor ANOVA
3 Continuous Continuous Continuous Partial correlation
4 Continuous Continuous Category Role-reversed ANCOVA

There are four further designs corresponding to those in the table, but 
with a category-dependent variable. They are dealt with by the approach 
known as log-linear modelling. An accessible treatment is available in 
Knoke and Burke (1983).

Examples of the four arrangements of confounded designs (Table 10.12)

I.v. category, d.v. continuous -  a between-subjects design
The Home Office has commissioned research on the effect of type of 
conviction on locus of control scores on prisoners. The two types of
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conviction to be compared are violence and burglary. Locus of control is to 
be measured using a scale of 1 to 7 on prisoners who have reached the end 
of their first four weeks of imprisonment. The locus of control scores are low 
for ‘external’ and high for ‘internal’ individuals.

1. Continuous confounding variable: intelligence score (IQ)
2. Category confounding variable: sixth form education (yes/no)

I.V. continuous, d.v. continuous -  a correlation design
A teacher wishes to research the effect of height of pupils in a local junior 
school on peer-rated popularity scores. The measure of popularity will be on 
a scale from 0 to 20. Correlation will be used to analyse the data.

3. Continuous confounding variable: age in months
4. Category confounding variable: sex (male/female)

10.3.3 Adjustment for the between-subjects design

Introduction

Consider the example introduced in section 10.3.2 of a survey in which 
interest is centred on the effect of type of conviction on locus of control in 
recently convicted prisoners. Intelligence and level of education are identifi­
ed as possible confounding variables because they are seen as likely to differ 
between the two groups of prisoners and to relate to the dependent 
variable, locus of control.

The data for 20 subjects are set out in Table 10.13. The intelligence 
scores follow the standard scale of 100 for population mean and are high 
for greater intelligence.

Continuous covariate

The analysis of covariance technique introduced in Chapter 7 is used here 
for adjusting the scores on the dependent variable to what would be 
expected if every prisoner had the same IQ score.

The summary tables showing the unadjusted and adjusted sums of 
squares are set out in Tables 10.14 and 10.15. Note that the sum of squares 
for type of conviction is greatly reduced by adjustment. This is because 
some of the variation in locus of control scores is explainable by the 
prisoners’ IQ scores. The main consequence of this is that conviction 
changes from significant at the 0.05 level in the unadjusted analysis to not 
significant.

The mean locus of control scores in the two groups are changed by the 
adjustment procedure. This is expected since the mean IQ scores differ in 
the two groups. All mean scores are shown in Table 10.16.

The reduction in the magnitude of the effect of type of conviction on locus 
of control due to adjustment is seen in the mean scores as well as in the 
sums of squares. The adjusted difference between the means is only 0.46 
compared to 0.76.
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Table 10.13 Data for prisoners’ locus of control

Conviction Locus of 
control

IQ Sixth
form

Burglary 5.1 98 no
Burglary 3.4 84 yes
Burglary 3.9 79 yes
Burglary 4.7 72 no
Burglary 5.2 126 no
Burglary 4.6 84 no
Burglary 3.2 80 yes
Burglary 5.0 114 no
Burglary 4.4 108 yes
Burglary 4.5 89 no
Violence 4.0 90 no
Violence 3.5 92 no
Violence 3.1 81 yes
Violence 4.4 97 no
Violence 2.3 70 no
Violence 2.7 66 no
Violence 4.3 78 yes
Violence 3.8 85 no
Violence 4.4 103 no
Violence 3.9 76 no

Table 10.14 Unadjusted analysis of variance

Source df SS MS F

Conviction 1 2.89 2.89 5.698a
Residual 18 9.12 0.507

Total 19 12.01

aF c=4.41 at 0.05 
= 8.29 at 0.01

Table 10.15 Adjusted analysis of variance (IQ removed from effect 
of conviction)

Source dfadj Ŝ adj MSad j âdj
Conviction 1 0.98 0.98 3.09 l a
Residual 17 5.40 0.318

Total 18 6.38

aF c=4.45 at 0.05 
= 8.40 at 0.01

Table 10.16 Means for prisoners’ locus of control

Group Mean IQ Mean locus Adjusted mean locus

Burglary 93.4 4.40 4.25
Violence 83.8 3.64 3.79
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The model fitted by the ANCOVA procedure as described in section 7.4
is:

Expected = overall + conviction + covariate
score mean effect effect
for a

rand° mly f 4- 0 231sampled =  4.02 + J +U ZJ I + 0.0304 (co v a r-88.6)
subject I —0.23 J

The deviations ±  0.23 are the amounts by which locus is increased or 
decreased from the overall mean due to type of conviction. 0.0304 is the 
amount by which locus is increased for every IQ point by which the 
prisoner exceeds the mean IQ of 88.6.

A further aid to conceptualizing the adjustment process is the representa­
tion of the sums of squares of the dependent variable on a Venn diagram. 
Figure 10.7 shows the Venn diagrams for the unadjusted and adjusted 
analyses.

Unadjusted Adjusted

total = 12.01 total = 12.01

Fig. 10.7 SSs for prisoners’ locus of control with IQ as covariate.

The sums of squares in the Venn diagram follow directly from the 
ANOVA summary tables.

In the adjusted Venn diagram in Fig. 10.7 there is an overlap of the 
regions representing the independent variable and the covariate. This 
illustrates the portion of the variation in the dependent variable (1.91) 
explained by type of conviction in the unadjusted analysis, but by IQ in the 
adjusted analysis.

In this representation, partialling out IQ from both the independent and 
dependent variables is achieved by erasing the IQ region completely, 
leaving the adjusted SSs as follows:

Conviction: 0.98
Residual: 5.40
Total: 6.38

This is exactly the set of SSs set out in the adjusted summary in Table 
10.15.
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Category covariate

The mean locus of control scores can be adjusted to what they would be if 
the same proportion of prisoners in each group had had sixth form 
education. The corresponding adjusted ANOVA summary tables and Venn 
diagrams can be obtained at the same time. The technique for this follows 
closely the analysis of covariance discussed for the continuous covariate. A 
statistical computer package is recommended for this. Any package that 
offers analysis of covariance or general linear modelling should be ad­
equate. See Appendix A.

The summary table showing the adjusted sums of squares is set out in 
Table 10.17.

Table 10.17 Adjusted analysis of variance (sixth form removed from 
effect of conviction)

Source ^/adj S^adj MSad j ^adj

Conviction 1 3.76 3.76 8.58a
Residual 17 7.46 0.4388

Total 18 11.22

aF c = 4.45 at 0.05 
= 8.40 at 0.01

Note that the sum of squares for type of conviction is increased by 
adjustment when compared with the unadjusted value in Table 10.14. This 
is because there is a synergic relationship between type of conviction and 
sixth form. In other words, the amount of variation explained by the two 
variables together is more than the sum of the amounts each explain on 
their own.

The main consequence of this is that conviction changes from significant 
at the 0.05 level in the unadjusted analysis to significant at the 0.01 level in 
the adjusted analysis.

The mean locus of control scores in the two groups are changed by 
the adjustment procedure. This is expected since the mean proportion 
of prisoners having attended sixth form differs in the two groups. 
All mean scores are shown in Table 10.18. The increase in the magni­
tude of the effect of type of conviction on locus of control due 
to adjustment is seen in the mean scores as well as in the sums of 
squares. The difference between the adjusted means is 0.89 compared to 
0.76.

Table 10.18 Means for prisoners’ locus of control

Group Proportion Mean locus Adjusted mean locus
in sixth form

Burglary 40% 4.40 4.4645
Violence 20% 3.64 3.5755
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The model fitted by the ANOVA procedure is:

Expected =  overall +  conviction + sixth form 
score mean effect effect
for a . . .
randomly f+0.44j j + 0.32
sampled =4.02 +< V +  s
subject (_— 0.44 J [ —0.32 J

(Note: this model ignores the possibility of interactions between conviction 
and sixth form. It is sometimes referred to as the Type II sums of squares.)

Figure 10.8 shows the Venn diagrams for the unadjusted and adjusted 
analyses. The sums of squares in the Venn diagram follow directly from the 
ANOVA summary tables.

Unadjusted Adjusted

total = 12.01 total = 12.01

Fig. 10.8 SSs for prisoners’ locus of control with sixth form attendance as 
covariate.

In Fig. 10.8, the concave region between the regions representing 
the independent variable and the covariate represents the synergy (section 
10.2.3), that is, the portion of the variation in the dependent variable 
(0.87) explained only by the combined action of type of conviction and sixth 
form.

In this representation, partialling out sixth form from both the indepen­
dent and dependent variables is achieved by erasing the sixth form region 
completely. This leaves the circular region for conviction with SS = 2.89 and 
the synergy with SS = 0.87. These adjusted SSs are set out with the adjusted 
total as follows:

Conviction: 3.76 
Residual: 7.46 
Total: 11.22

This is exactly (subject to rounding) the set of SSs set out in adjusted form 
in Table 10.17.
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10.3.4 Adjustment for the correlation design

Introduction
Consider the example introduced in section 10.3.2 of a survey in which 
interest is centred on the effect of height on popularity. Sex and age are 
identified as possible confounding variables because they are each seen as 
likely to be related to both height and popularity. Ten males and ten females 
were included in the study.

The data for the 20 subjects are set out in Table 10.19. Height is in 
metres, age in months and the popularity scores are higher for the more 
popular children.

Table 10.19 Data for children’s popularity

Height Popularity Sex Age

1.11 8 male 97
1.23 5 male 99
1.18 7 male 102
1.31 14 male 103
1.30 10 male 102
1.25 7 male 100
1.41 6 male 106
1.31 11 male 102
1.15 10 male 101
1.58 13 male 108
1.60 14 female 105
1.31 11 female 97
1.49 13 female 106
1.40 8 female 99
1.63 17 female 107
1.21 13 female 102
1.34 10 female 100
1.20 12 female 100
1.36 9 female 104
1.38 11 female 101

Continuous covariate

The relationship between height and popularity is measured by the correla­
tion. Its value here is 0.554. It can be interpreted as analysis of variance 
using the fact that its square is the proportion of the sum of squares of 
popularity explained by height. The SS of popularity is 178.95, of which 
30.69% (0.5542 = 0.3069) is explained by height. The analysis of variance 
summary in Table 10.20 displays this result. This is the unadjusted 
summary table. In Table 10.20, F exceeds Fc at 0.05. This means that the 
effect of height is statistically significant at the 0.05 level.

Age is a continuous covariate. The most comprehensive way to adjust for 
its effect on the relationship of height with popularity, since all three 
variables are continuous, is to use multiple regression. This technique is 
discussed in Chapter 11. However, a convenient technique is available
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Table 10.20 Unadjusted analysis of variance

Source df SS MS F

Height 1 54.98 54.98 7.98a
Residual 18 123.97 6.887

Total 19 178.95

aF c=4.41 at 0.05 
= 8.29 at 0.01

based on the correlations among the three variables. The technique consists 
in a formula for partialling out the effect of a continuous variable from a 
correlation. It is called partial correlation. This technique does not make 
available SSs, test of significance or the additive model.

Partial correlation

Let the r symbols stand for correlations of pairs of variables according to 
the following scheme where variables 1, 2 and 3 refer to height, popularity 
and age, respectively.

Symbol Variables Value

r12 variable 1 with variable 2 0.554
r13 variable 1 with variable 3 0.745
r23 variable 2 with variable 3 0.487

The formula for the correlation of variable 1 with variable 2, partialling out 
the effects of variable 3, is

ri2 0*13)0*23)
[(1—r?3) ( l—r i3) ] 1/2

This gives

0.554—(0.745)(0.487) _ A„ 0
[(1 — 0.7452)(1 — 0.4872) ] 1/2

for the correlation of height with popularity while age is partialled out. 
This represents the correlation expected if the children were all of the same 
age. Partialling out age reduces the correlation of height with popularity 
from 0.554 to 0.328.

The adjusted analysis of variance summary table and the Venn diagrani 
can be obtained, with some manipulation, from the correlations. They are 
more conveniently obtained from the multiple regression approach (de­
scribed in Chapter 11). The adjusted analysis of variance summary is in 
Table 10.21. This shows that the partial correlation is not significant, in 
contrast to the not-partial correlation.
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Table 10.21 Adjusted analysis of variance (age removed from effect 
of height)

Source 4/adj Ŝ adj MSad j Fadj
Height 1 14.73 14.73 2.056a
Residual 17 121.78 7.163

Total 18 136.51

aF c=4.45 at 0.05 
= 8.40 at 0.01

The model fitted by the multiple regression procedure is 

Expected
score =  overall mean +  height effect + age effect
for a
randomly
sampled = 10.45 + 8.91(height—1.338) -f0.162(age —102.05)
subject

The values 1.338 and 102.05 are the means of height and age respectively. 
The interpretation is analogous to that of the covariate term in the model 
discussed in section 7.4. Every unit by which a child exceeds the mean 
height leads to 8.91 extra units of popularity, all else being held constant. 
Every unit by which a child exceeds the mean age leads to 0.162 extra units 
of popularity, all else remaining constant.

The Venn diagrams are in Fig. 10.9. As before, the correlation with age 
partialled out is obtained from the adjusted Venn diagram by erasing the 
whole region of age. This leaves sums of squares as follows:

Height: 14.73
Residual: 121.78 
Total: 136.51

This shows again the partial correlation as

(14.73/136.51)1/2 = 0.328

Unadjusted Adjusted

Fig. 10.9 SSs for pupils’ popularity with age as covariate.
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Category covariate

Sex is a category covariate. The most comprehensive way to adjust for its 
effect on the relationship of height with popularity, since both the indepen­
dent and dependent variables are continuous, is to use the general linear 
model. This is an advanced technique. Most books which deal with it 
require of the reader a considerable background in statistics. An example of 
the more accessible treatments can be found in Healey (1988).

However, a convenient approach is available based on the analysis of 
covariance introduced in Chapter 7. The method is applied by suppos­
ing the roles of independent variable and covariate are reversed. The 
standard analysis of covariance computer program then provides the 
sums of squares needed for drawing the Venn diagram for the fitted 
model. This can be used just as well for reversed or not-reversed inter­
pretations.

The role-reversed summary table is in Table 10.22. This is the standard 
application of analysis of covariance. It shows the effect of sex on popularity 
with height adjusted out.

Table 10.22 Adjusted analysis of variance (role-reversed) (height 
removed from effect of sex)

Source ^/adj SSadj MSadj Fadj

Sex 1 12.25 12.25 1.86a
Residual 17 111.72 6.572

Total 18 123.97

aFc=4.45 at 0.05 
= 8.40 at 0.01

It is interesting to note from Table 10.22 that sex does not have a 
significant effect on popularity after the effect of height has been partialled 
out. Table 10.22 is used in conjunction with information obtained from the 
unadjusted analysis of the effect of sex on popularity (not shown), to draw 
the Venn diagrams. This is Fig. 10.10.

Unadjusted Adjusted

total = 178.95 total = 178.95

Fig. 10.10 SSs for pupils’ popularity with sex as covariate.
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Table 10.23 Adjusted analysis of variance (sex removed from effect 
of height)

Source 4fadi SSadj MSadj Fadj
Height 1 30.78 30.78 4.684a
Residual 17 111.72 6.572

Total 18 142.50

aFc= 4.45 at 0.05 
= 8.40 at 0.01

It is a simple task to erase the sex region from the Venn diagram to 
obtain the sums of squares for the effect of height on popularity adjusted for 
sex as required. The result is in Table 10.23.

From the adjusted sums of squares it is possible to extract the adjusted 
correlation. It is (30.78/142.50)1/2=0.465. This is the correlation of height 
with popularity, with sex partialled out. Note that partialling out sex has 
reduced the correlation from 0.554 to 0.465.

The fitted model is:

Expected =  overall mean + height effect +  sex effect
score
for a
randomly f .
sampled =  10.45 +9.267(height-1.338) +  J u,84l
subject t+0.84 J

The interpretation of the model is as follows: 9.267 is the amount by 
which popularity increases for each unit of height in metres by which the 
pupil exceeds the mean height of 1.338 metres. + 0.84 is the amount by 
which popularity is reduced below or raised above the mean for being male 
or female, respectively.

10.4 EXERCISES

10.1 Sixteen small task-oriented groups of junior school pupils were 
observed in order to explore the effect of ‘frequency of production of 
organizing behaviours’ (org) on ‘quality of completed task’ (quality).

The proportion of SS of the d.v. explained by the i.v. is shown in Fig. 10.11.
Measurements were also obtained on a possible confounding variable, 

the ‘verbal ability scores of the members of each group’ (verbal). Verbal is 
also related to the d.v. as shown in Fig. 10.12.

The ‘synergy’ SS of 23 units represents the amount by which the SS 
explained by org is increased by the presence in the model of verbal and 
vice versa. All the above variables are continuous.

Obtain:

(a) the correlation of org with the d.v.
(b) as in (a) but with the effect of verbal partialled out.
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r~sidual = 172 

total= 255 

Fig. 10.11 

residua 1 = 9 9 

total= 255 
Fig. 10.12 

(c) the correlation of verbal with the d.v. with the effect of org partialled 
out. 

(d) the summary table showing the effect of org on the d.v. both adjusted 
and not adjusted for verbal. 

Measurements were also obtained on another possible confounding 
variable, the 'non-verbal ability scores of the members of each group' 
(nonverbal). Nonverbal is a continuous variable. The relationship of nonver­
bal to the d.v. is shown in Fig. 10.13. 

Obtain: 
(e) the correlation of org with the d.v. with the effect of nonverbal partialled 

out. 

residual = 1 01 

tota1=255 
Fig. 10.13 



(f) The summary table showing the effect of org on the d.v. both unadjus-
ted and adjusted for nonverbal. 

10.2 Use unweighted means analysis to obtain the means adjusted for the 
category type confounding factor in the following non-randomized experi­
ment. 

Thirteen male and 15 female pupils were coached in basket-ball for one 
hour according to either the traditional method or an imaging method. 
Successful shots (baskets) out of 20 attempts are set out in the table below. 
Sex is regarded as a confounding factor. The individual pupils could not be 
randomized. 

Male Female 

Traditional 15 17 12 13 10 11 6 
15 8 13 19 8 5 7 

Imaging 10 9 10 6 9 4 
8 7 10 5 6 

7 4 6 

(a) Compare the size of the effect of the conditions in the adjusted and 
unadjusted analyses. 

(b) If the resulting two-factor ANOVA resulted in Fig. 10.14, set out 
the adjusted and unadjusted summary tables, complete the cor­
responding tests of significance and discuss the effect of the adjustment. 

total=415 

Fig. 10.14 

10.3 Set out below are the number of successful basketball shots (baskets) 
out of 100 attempts by pupils trained by either method A (traditional) or by 
method B (imaging). The covariate is the number of months the pupil had 
been playing basketball. 

Raw data: 

Group A 

Group B 

baskets (Y) 
months (X) 
baskets (Y) 
months (X) 

15 
23 
17 
10 

42 
35 
52 
25 

25 
29 
28 
15 

12 
20 
26 
12 

3 
17 
38 
20 

Exercises llt27 I 
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Figure 10.15 displays each pupil's result as a point labelled [!] for method 
A and + for method B. 

(a) Calculate and plot each group mean on Fig. 10.15. 
Roughly draw the best fitting parallel regression lines passing 

through the group means. 
Use these lines to estimate what each group mean would be if all 

pupils had been playing for 20 months. 
(b) Display the unadjusted and adjusted effects of the conditions as bar 

charts. Has the adjustment increased or reduced the size of the 
effect? 

(c) Use Fig. 10.16 to construct an adjusted summary table and to carry out 
an F -test of the adjusted effect of the conditions. 

60 

50 • 
40 Ill 

• 
.!!! .. 30 Ill group A 
115 • 1l • Ill • group B 

20 
• 1!1 

10 1!1 

1!1 
0 

0 10 20 30 40 
months 

Fig. 10.15 Baskets versus months for two groups. 

Unadjusted. Adjusted. 

conditions months 

0 
residual= 1598 residual= 39 

tota1=2008 tota1=2008 

Fig. 10.16 Venn diagram for SSs. 

10.4 The following four empirical investigations are to be carried out by 
use of a survey or by comparison of pre-existing groups. Consider (aHd) 
below for each investigation. 

(a) Identify the indpendent and dependent variables and note for each 
whether it is category or continuous type and for the i.v. whether it is 
intrinsic or extrinsic. 
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(b) Identify possible confounding variables and identify them as category 
or continuous type.

(c) Suggest ways in which the effects of the confounding variables might be 
taken account of.

(d) Consider the feasibility of using a randomized experiment.

Investigation 1
You are to research the effect of ‘height of child’ in a local junior school on 
peer-rated ‘popularity scores’. The measure of popularity will be on a scale 
from 0 to 20. Correlation will be used to analyse the data.

Investigation 2
It is required to investigate the effectiveness of a recent TV programme 
about vaccination. Mothers registered at a particular clinic who were due 
to have their child vaccinated around the date of the broadcast are to be 
interviewed.

Whether or not mothers saw the programme will be related to whether 
or not they had the vaccinations done in the three weeks following the 
broadcast.

Investigation 3
‘Pupil-centred’ and ‘traditional’ teaching methods are to be compared. Two 
equivalent classes in Hatfield Green School were selected and randomly 
assigned to one of each of the methods for all English lessons for a year. At 
the end of the year a t-test was used to compare the mean scores on an 
English test.

Investigation 4
The Home Office has commissioned you to research the effect of type of 
conviction on ‘locus of control’ scores on prisoners. The two types of 
conviction to be considered are ‘violence’ and ‘burglary’. Locus of control is 
to be measured using a 7-point scale on prisoners who have reached the 
end of their first four weeks of imprisonment.
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11.1 INTRODUCTION

Other sections of this book are concerned with designs in which at least one 
of the independent variables is of category type. Multiple regression refers 
to designs in which all independent variables (i.v.s) are continuous. Its 
inclusion is justified by its similarity to the two-factor unbalanced design 
and the analysis of covariance; this contributes to completeness without 
requiring many new concepts.

Table 11.1 summarizes the structures of the designs based on two i.v.s 
dealt with here and in Chapters 6 and 7.

Note that in this chapter interaction between i.v.s is omitted from all 
analyses even if it is present in the data.

Table 11.1 The structures of various models

Model Dependent
variable
type

Independent
variable
type

Two-factor ANOVA Continuous Both category
One-factor ANCOVAa Continuous 1 category

1 continuous
Two-variable Continuous Both continuous

multiple
regression

“Regarding the covariate as an i.v.

11.2 OVERVIEW OF DESIGNS, VARIABLES AND 
ORTHOGONALITY

It is unusual that a continuous variable is varied experimentally. An 
exception is an experiment in which individuals are exposed to a tone 
whose pitch is set according to a random process. The dependent variable 
is the difference between the pitch to which the subject was exposed and the 
pitch of the note produced by the subject in attempting to reproduce it.

More commonly a continuous i.v. arises as a measurement in a survey or 
observational study where it is more often intrinsic rather than extrinsic. In 
this form the contitinuous i.v. has already been presented as a continuous 
covariate in Chapter 7.
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The interconnections between types of i.v. and properties and names of 
designs is represented on the Euler diagram in Fig. 11.1. The labelling of the 
regions (aHe) refers to the explanations that follow. Note that a factorial 
design consists of category i.v.s and a continuous d.v. 

Fig. 11.1 Arrangements of types of variables and designs. 

(a) Unbalanced factorial design This arises either from a randomized 
experiment with unequal numbers in the cells or from a survey. The SSs of 
this design are represented in the Venn diagram in Fig. 11.2(a). This was 
introduced in section 10.2. 

(b) Balanced factorial design This usually arises from a designed experi­
ment with or without randomization. It has identical numbers in the cells 
and leads to an orthogonal analysis of variance. This means its SSs can be 
represented by non-overlapping regions of the Venn diagram (Fig. 11.2(b)). 
This was discussed in Chapter 6. 

(c) Balanced factorial design with covariate This is the same as (b), but the 
addition of a continuous covariate introduces non-orthogonality. The SS for 
the covariate is expected to overlap the other regions of the Venn diagram 
(Fig. 11.2(c)). This was introduced in Chapter 7 for the single i.v. case. 

(d) Unbalanced factorial design with covariate This is the same as the 
design in (a), but with a continuous covariate whose SS on the Venn diagram 
representation is expected to overlap all other regions (Fig. 11.2(d)). 

(e) Multiple regression Continuous covariates have mutually overlap­
ping regions on the Venn diagram. For simplicity it is supposed here that 
there are no interactions among the covariates. This design usually arises 
from a survey (Fig. 11.2(e)). 

11.3 COMPARISON OF MODELS WITH CATEGORY AND 
CONTINUOUS INDEPENDENT VARIABLES 

11.3.1 Overview 

In this section similarities are illustrated between models for category and 
continuous type i.v. s. The similarity of these models is implicit in their 
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(a) Unbalanced factorial design. (b) Balanced factorial design. 

'"'"""'" 0 

(e) Multiple regression. 

Fig. 11.2 Venn diagram representation of sums of squares of various models. 

being members of the class of models called general linear models. Multiple 
regression is introduced by showing it as a version of the models already 
developed earlier in the text. In particular, the reader is referred to section 
10.2 (two-factor unbalanced design) and the section on adjustment for a 
continuous covariate in section 10.3.4. 
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Refer to Table 11.2.
(a) Summary The designs are briefly summarized. Note that the bal­

anced two-factor design is the same example as that used in Chapter 6.
(b) Raw data The last column represents the d.v. in both tables of data.
(c) Models Note that no interaction is present in the models. By 

choosing to ignore any interaction between the variables a greater portion 
of the 55s remains as unexplained residual.

The terms in the balanced two-factor model represent the deviations due 
to particular levels of the factors. For example ‘+ 4 ’ is the amount by which 
sewing times are increased when machine type 3 is used.

The terms in the multiple regression model represent the deviations due 
to particular values of the independent variables. For example 0.73 (profes­
sional motivation —11.0) is the amount by which exam grade is increased 
for an individual with a particular value of professional motivation. The 
gradient or scale ratio of 0.73 is the amount by which exam grade is 
increased for a unit increase in professional motivation supposing other i.v.s 
are held constant.

The terms 0.73 and 0.639 are known as regression coefficients or multiple 
regression coefficients.

The multiple regression model is often presented in a modified but 
equivalent form in the output from computer programs. The alternative 
presentation is obtained by simple algebraic manipulation. The equation 
for exam grades is rewritten:

expected
exam = [10.0-(0.73)(11.0)-(0.639)(11.33)] +
grade +0.73 (professional motivation)+0.639 (coursework)

which reduces to:

expected
exam = —5.27+0.73 (professional motivation)+ 0.639 (coursework)
grade

The reverse transformation can easily be carried out provided the mean 
values of the i.v.s are known.

(d) AN  OVA For the multiple regression design the two sequential 
orderings of independent variables lead to different partitions of the total 
variation. In the table with professional motivation in the first position, the 
SS and test of significance refer to the entire contribution of professional 
motivation to explaining variation in exam grades. The SS of 35.0 corre­
sponds to the entire circular region of the Venn diagram. Professional 
motivation has had the ‘first bite at the cake’.

In the table with professional motivation in second position, the SS of
10.95 corresponds to the half-moon shaped region of the Venn diagram. 
Professional motivation has only been able to explain variation in exam 
grade left unexplained by coursework. In this table the SS and test of 
significance refer to the unique contribution of professional motivation.

The continuous i.v. s in the multiple regression have one degree of 
freedom associated with each of them.
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Table 11.2(a) Experiment with two category-type i.v.s

(a) Summary of design Sixty machinists were randomly allocated, five to each 
combination of type of machine and training. Performance was measured as 
completion time of a sewing task.

(b) Raw data Subject no. Machine Training Completion
time

1 1 1 12.5
2 1 1 11.5
3 1 1 13.9
4 1 1 12.8
5 1 1 9.3
6 1 2 13.1
7 1 2 12.5

60 3 4 13.4

(c) Model
Expected
completion
time

(d) ANOVA summary table

= 15 + fcS}
machine training

Source SS df MS F

Machine 640.0 2 320.0 27.8
Training 126.7 3 42.2 3.66
Residual 622.7 54 11.5

Total 1389.4 59

(e) Sizes of effects Machine explains 640 out of 1389 = 46% of total variation in
completion times.
Training explains 126.7 out of 1389 = 9% of total variation in 
completion times.

(f) Venn diagram

total *= 1389.4

(e) Sizes o f effects These need no further explanation in the two-factor 
category i.v. design. In the multiple regression design the size of effect can 
refer to either the whole or the unique effect of the variable.

Thus 10.95/101.94=0.107 is the proportion of variation in exam grade
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Table 11.2(b) Survey with two continuous-type i.v.s (multiple regression)

(a) Summary of design A survey was carried out on six students to relate their 
final exam grades to an attitude measure (professional motivation) and to a measure 
of performance during the course (mean coursework mark).

(b) Raw data Subject no. Professional
motivation

Course Exam 
work grade

1 14 19 18
2 11 8 9
3 8 14 8
4 13 10 8
5 10 8 5
6 10 9 12

(c) Model
expected exam = 10.0 + 0.73 (professional motivation -  11.0)

grade + 0.639 (coursework -  11.33)

(d) ANOVA summary tables (sequential SSs i.e. Type I)

Source SS df MS F Source SS d f M S F

Professional 34.98 1 34.98 3.123 Coursework 57.39 1 57.39 5.12
motivation

Coursework 33.36 1 33.36 2.98 Professional
motivation

10.95 1 10.95 0.98

Residual 33.60 3 11.2 Residual 33.60 3 11.2

Total 101.94 5 Total 101.94 5

(e) Sizes o f effects Professional motivation explains 34.98 or 10.95 out of a total
variation of 101.94. This represents 34.3% or 10.7% depending 
on sequential position.
Coursework explains 33.36 or 57.39 out of a total variation of 
101.94 = 32.7% or 56.3% depending on sequential position.

(f) Venn diagram

total =  101.94

explained by professional motivation with coursework partialled out. 0.107 is 
the square of the semi-partial correlation. This gives (0.107)1/2 = 0.327 as the 
correlation of professional motivation with exam grade with coursework only 
partialled out of professional motivation (hence semi-partial correlation).
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Note that

10.95 . . . .
10.95 +  33.60

is the square of the partial correlation. The square root of this, 0.496, is the 
correlation of professional motivation with exam grade with coursework 
partialled out.

(f) The Venn diagram The SS of the i.v.s machine and timing in the 
balanced design are represented by non-overlapping regions. By contrast, 
the SS s of the i.v.s professional motivation and coursework in the multiple 
regression overlap.

The overlap represents interdependence of the i.v. s.

11.3.2 Comparison of the models

Table 11.3 represents the components of the models for each design as 
graphs. In each model a fictitious individual’s score (represented by a single 
point) is used for illustration purposes.

The two-factor balanced design is represented in Table 11.3(a). The 
individual selected is in the group that experienced machine type 3 and 
obtained a score above the mean for the group (i.e. was slower at sewing). 
According to the model the score is made up of the following components 
(set out here in the same order as in the graph):

error/residual (due to individual characteristics, 
measurement error, the other factor or interaction)

+
deviation from overall mean completion time due to 
machine 3 ( +  4)

+
overall mean completion time (13)

In the multiple regression model the individual selected has an above 
average value for professional motivation and obtained a grade on the exam 
above that expected from his or her professional motivation value. Accord­
ing to the model the score is made up of the following components (set out 
here in the same order as in the graph):

error/residual (due to individual 
characteristics or measurement 
error or the other i.v.)

+
individual’s deviation from overall
mean exam grade due to 0.73(professional motivation —11)
professional motivation

+
overall mean exam grade (10)

For both models a second graph would be required to represent the 
effect of the second independent variable.
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Table 11.3 Components of models (p.m. professional motivation; c.w. coursework)

(a) Experiment with two category-type i.v.s 
Model

expected
completion
time

15

Overall
mean
completion
time

+

completion time

overall
mean

c.t.

J —  deviation from overall 
mean c.t. due to machine

Deviation 
from mean 
completion 
time due to 
machine

Deviation 
from mean 
completion 
time due to 
training

*} error/residual

v me*

overall mean c.t.

1 2 3

(b) Survey with two continuous-type i.v.s (multiple regression)

machine
type

Model
expected
exam
grade

10.0

Mean
exam
grade

0.73 (p.m.-ll.O)
v  V  J

Deviation 
from mean p.m.

Deviation from 
mean exam grade 
due to p.m.

exam
grade

mean
exam
grade

0.639 (c.w-11.33)
v------------- V --------------'

Deviation 
from mean c.w.

Deviation from 
mean exam grade 
due to c.w.

error/residual

deviation from overall 
mean exam grade due to p.m.

deviation from mean p.m.
overall mean exam grade

professional
motivation

score
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11.4 GLOSSARY OF TERMS FOR MULTPLE REGRESSION

Goodness of fit

Independent
variables
Partial
correlation

Regression
coefficient

Regression
equation

Relationship 
of scale

Residual

Residual
variance
R-squared

Semi-partial
correlation

Sequential
inclusion

Stepwise
inclusion

Unique
contribution

Proportion of variation explained by regression model 
(same as R-squared).
Also known as predictors or as explanatory variables 
(all continuous-type).
Partial correlation of an i.v. with the d.v. is the correla­
tion with both adjusted for all other i.v.s. In other 
words, it is the correlation between an i.v. and the d.v. in 
a world in which all subjects have identical values for all 
other i.v. s.
Weight or scale multiplier for an independent variable 
chosen so as to maximize the proportion of variance 
explained by the regression model.
Formula enabling calculation of predicted value of the 
dependent variable from values of the independent vari­
ables.
Interpretation of regression coefficient as scale of re­
lationship between the dependent variable and the 
corresponding independent variable when all other in­
dependent variables are held constant.
Difference between an observed value and the corre­
sponding predicted value of the dependent variable.
Variance across the sample in values of the dependent 
variable not explained by the regression model.
Proportion of variation in the dependent variable ex­
plained by all the independent variables in the model.
Semi-partial correlation of an i.v. with the d.v. is 
the correlation with the i.v. only adjusted for all other
i.v.s. It is a measure of the relationship between the 
part of an i.v. not explainable by the other i.v. s and the 
d.v. In other words, it is a measure of the unique 
contribution of an i.v. to explaining the variation in the 
d.v.
First i.v. on list has first bite at cake, second only has 
possibility to explain variation not already explained by 
the first etc. (hence sequential SS).
Automatic algorithm: first i.v. to be included is the best 
single predictor, second is best at explaining variation 
not already explained by the first, etc. (a stopping rule 
usually applies).
Portion of the variation in the dependent variable ex­
plained by an independent variable and not explainable 
by any other i.v. s.
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11.5 SEQUENTIAL MODEL CONSTRUCTION

11.5.1 Introduction

In survey research there is often a need to carry out exploratory analysis. 
The question which concerns the researcher is, ‘Which combination of i.v. s 
best explains variation in the d.v.?’.

Implicit in this question is a requirement for parsimony. This means 
explaining as much variation as possible using as few i.v. s as possible. One 
approach to this involves fitting all possible models in a hierarchical sequence.

Step I Fit all models involving a single i.v.
Step 2 Fit all models involving pairs of i.v. s
Step 3 Fit all models involving three i.v. s

and so on. If there are no more than four i.v. s this approach is manageable. 
It involves fitting 3 +  3 +1 =  7 models for the three-variable model and 
4 + 6  + 4 + 1 = 15 models for the four-variable model, and so on. The number 
of models is obtained by counting all combinations of i.v. s in the model.

11.5.2 Selecting the best model

The criterion for model selection is the proportion of variation in the d.v. 
explained. This is referred to as multiple correlation squared or R-squared.

Consider as an example a multiple regression analysis involving three 
independent variables:

X 1 average excess pulse rate above resting level 
X 2 intake of caffeine 
X 3 body weight

The aim of the study is to explore the extent to which these three i.v. s 
explain variation in individuals’ reaction times. Reaction time is the 
dependent variable. Data were obtained from a sample of 30 individuals.

The proportions (as percentages) of total SS explained by each model are 
set out in Table 11.4. The best models involving one and two i.v.s are the 
ones which explain 35.1% and 52.3% respectively.

Table 11.4 Proportions of variation in reaction times 
explained by combinations of three independent variables

Independent variables Multiple R 2 (%)
included in regression

* 1 18.2
* 2 26.2
x 3 35.1
* 1 * 2 37.3
* 1 * 3 46.6
* 2 * 3 52.3
* 1* 2 * 3 60.6
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11.5.3 Test of significance 

The further question is, 'Is the best model one involving one, two or three 
independent variables?'. 

The decision depends on circumstances. Clearly the full model, that is the 
model involving all i.v.s, explains the most variation in the d.v. However, it 
may be that the additional amount of variance that it explains, beyond that 
explained by the best of the models involving one fewer i.v. s, is not 
significantly different from zero. The hypothesis test formulation is as follows: 

H 0 : no additional variance explained 
H 1 : some additional variance explained 

It can be seen from the Venn diagram in Fig. 11.3 that the required test is 
of the unique contribution of variable X 1 to explaining variation in the d.v. 
This is because X 2 and X 3 form the best pair. The unique contribution of 
X 1 is an SS of 26. The summary table for the test is in Table 11.5. 

residual = 123.5 

total = 31 3.5 

Fig. ll.3 Sums of squares for the reaction time example. 

Table ll.5 Summary table for test of unique contribution of 
variable xl 
Source df ss MS F 

x2 and x3 2 164 82.0 17.26 
xl (unique) 1 26 26.0 5.47• 
Residual 26 123.5 4.75 

Total 29 313.5 

"F.=4.22 at 0.05 

The table is constructed according to the principles introduced in 
Chapter 10. The degrees of freedom are one for each continuous i.v. and 
one less than the sample size for the total SS. The degrees of freedom for the 
residual SS are equal to the difference between the total df and the df for 
terms fitted in the model. 
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The SSs in Table 11.5 are taken directly from Fig. 11.3. The SS (unique) 
for variable X 1 is the difference between the SS explained by the full model 
(all i.v. s involved) and the SS explained by the model based on variables X 2 

and X 3 . 

In this example the unique contribution of X 1 to explaining variation in 
reaction times is statistically significant at the 0.05 level. Therefore the 
model involving all three i.v. s is, in this sense, a better model than the one 
which only involves X 2 and X 3 • 

11.5.4 Automatic stepwise procedures 

Most computer packages that provide multiple regression offer forward 
stepwise procedures. These are procedures that at the first step identify the 
best single explanatory variable and bring in, step by step, further variables, 
choosing one at a time according to the amount of variation (SS) addi­
tionally explained. The result is usually expressed in terms of increments in 
multiple R-squared. The process is here set out in detail. 

Step 1 Identify the best single explanatory variable, carry out the test of 
significance, report the value of R-squared and the coefficients for the model. 

Step 2 Identify the i.v., not previously involved, that explains the 
greatest amount of the variation left unexplained after the previous step. 
Carry out the test of significance of the newly explained variation, report 
the value of R-squared and the coefficients for the model. 

Steps 3, 4 etc. Further steps are repeats of step 2. 
The model that is fitted sequentially by this procedure for the reaction 

time study is represented by the Venn diagram in Fig. 11.4. In the reaction 
time example the i.v.s are included in the order X 3 , then X 2 , then X 1 . 

Fig. 11.4 Sequential stepwise fitting of regression model. 

Stopping rule The automatic procedure for building up a sequential 
model usually includes an automatic stopping rule. A common rule is to stop 
adding terms to the model as soon as the last statistically significant term has 
been added. 



142 Multiple regression

11.6 EXERCISES

11.1 A survey was carried out on five management trainees to investigate 
the relationship between the scores obtained in a personality test, an 
aptitude test and the final assessment.

Subject Personality Aptitude Final assessment

1 48 72 69
2 46 68 58
3 60 80 81
4 42 71 58
5 50 82 84

Mean 49.2 74.6 70.0

Figure 11.5 shows the Venn diagram for SS for final assessment. Multiple 
regression coefficients of 0.35 for personality and 1.68 for aptitude were 
obtained from a computer analysis.

total = 606
Fig. 11.5

(a) Use the information given above to write out the model for predicting a 
subject’s final assessment.

(b) Use the model to estimate the final assessment for each of the five 
subjects. Calculate the residuals and hence the sum of squares of 
residuals. Check your answer by reference to the Venn diagram.

(c) Construct an ANOVA table for a sequential analysis taking personality 
as the first effect. Complete the F-tests and report your conclusions.

(d) Obtain multiple R-squared and explain what it means in the context 
of this investigation.
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Two-factor designs with 
between- and within- 

subjects factors

12.1 INTRODUCTION

The researcher should decide on within-subjects or between-subjects for 
each factor in an experiment on the basis of the discussion in section 9.5 
and common sense. Previous experiments in the same general area should 
not be copied thoughtlessly.

While the general principles of the two-factor design were established in 
Chapter 6 for the two-factor independent groups design (i.e. two between- 
subjects factors or between-between or BB), some important differences of 
detail need to be considered when using the between-within (BW) and 
within-within (WW) designs.

Examples of BW and WW designs are introduced in sections 12.2 and
12.3. Attention needs to be given to the construction of the specific tests of 
hypotheses and calculation of size of effects.

12.2 EXAMPLE OF A BW DESIGN

12.2.1 Introduction

Individuals were randomly allocated to three groups of 10. Each group 
experienced a different condition (rounded, straight or irregular) of visual 
stimulus.

Each stimulus was presented in both a control and an experimental 
version to each subject. This is a version of the well-known psychology 
experiment on the Stroop effect.

The factors were:

stimulus (3 levels, between-subjects) 
condition (2 levels, within-subjects)

The dependent variable was reaction time in milliseconds. It was ob­
tained twice for each subject, once in the control condition and once in the 
experimental condition.

The raw data and mean reaction times are in Tables 12.1 and 12.2.
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Table 12.1 Reaction times data for BW design (milliseconds)

Rounded Straight Irregular

Subject Control Expt. Subject Control Expt. Subject Control Expt.

1 9.00 7.00 11 8.00 11.00 21 9.36 13.70
2 10.00 12.00 12 7.00 10.00 22 16.09 13.08
3 10.41 12.38 13 11.80 16.52 23 7.17 9.94
4 9.66 8.06 14 12.56 12.62 24 7.81 8.34
5 6.14 7.00 15 26.96 36.62 25 9.31 13.78
6 11.81 8.51 16 7.83 7.19 26 10.82 9.56
7 8.31 8.42 17 5.69 9.46 27 7.19 7.77
8 16.01 8.92 18 12.99 13.49 28 7.31 6.66
9 6.74 8.18 19 6.62 10.02 29 8.80 10.20

10 10.25 6.61 20 7.78 6.50 30 5.24 7.53

Table 12.2. Mean reaction times for BW design

Condition

Control Experimental Mean

Stimulus Rounded 9.83 8.71 9.27
Straight 10.73 13.34 12.04
Irregular 8.91 10.06 9.48

Mean 9.83 10.70 10.26

The model follows from the table of means. It is:

Expected 
value of 
reaction 
time

= 10.26 +

Overall
mean

I  “  O'43!
|+ 0 .4 3 j

Effect of 
condition

f -0 .9 9 )  
{ +1.78 > 
{ -0 .78 J
Effect of 
stimulus

f +0.99 -0 .9 9 )  
+  < -0 .88 +0.88 > 

I —0.14 +0.14 J

Effect of 
interaction

The main use of the model is for comparing the sizes of the effects of the 
different terms in the model in units of the dependent variable. Here it 
shows that the effect of condition is +0.43 milliseconds whereas the effect 
of stimulus is of the order —1.0 to +1.8 milliseconds.

However, since the numerical values of the model usually have to be 
calculated by hand, they are not often obtained.

No new issues arise in presenting the effects of the independent variables 
and interaction in terms of the cell and marginal means. They are presented 
as bar charts and interaction diagram in Fig. 12.1.

It is evident that in this example reaction times are longest for the 
straight level of stimulus and for the experimental level of condition. There 
is evidence of an interaction shown by the non-parallel relationship 
between the lines linking cell means in the same condition. However, an 
analysis of variance is required before statements can be made about the 
presence of effects in the population.
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(a) Effect of condition (b) Effect of stimulus.

control experiment 
condition
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(c) Interaction diagram -  stimulus by condition.

stimulus

Fig. 12.1 BW design -  mean reaction times.

12.2.2 Analysis of variance for BW design

The summary table for analysis of variance is given in Table 12.3. The rules 
for the analysis of variance of the BW design will be dealt with in section
12.4. However, there are two points worth making here. The first point

Table 12.3 Analysis of variance for the BW design

Source df Type SS MS M SCTTOr F Fc

Stimulus 2 B 94.8 47.4 43.2 1.10 3.35
Condition 1 W 11.5 11.5 4.2 2.74 4.21
Stimulus x Condition 2 W 35.4 17.7 4.2 4.21 3.35

Subjects (within-groups) 27 1166.4 43.2
Subjects x Condition 27 113.4 4.2

Total 59

Fc is the 0.05 critical value
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is the list of sources of variation appearing in the table. It is helpful to 
remember that this design is a combination of the one-factor between- 
subjects design of Chapter 4 and the one-factor within-subjects design of 
Chapter 5. If subjects is relabelled within groups and subjects x condition is 
relabelled reliability it is seen that stimulus together with its error term 
subjects represent the between-subjects dimension, whereas condition with 
its error term subjects x condition represent the within-subjects dimension.

The second point is the ten-fold size difference (43.2 compared to 4.2) 
between the M Serr0T term of stimulus, the between-subjects factor, and the 
MSerror term of condition, the within-subjects factor. It is evident in this 
example that an effect has to be much larger to attain significance if it is 
between- rather than within-subjects. This reinforces the discussion in 
section 9.5.2.

12.2.3 Tests of significance for the BW design

The basic analysis of variance in Table 12.3 is obtainable from most of the 
well-known statistical packages for computers (Appendix A). It makes 
available tests of hypothesis about the existence in the population of effects 
due to the two factors and their interaction. It is seen that only in the case 
of the interaction does the F value exceed the 0.05 critical value. Thus H 0 
is rejected for interaction but not rejected for stimulus and condition.

12.2.4 Venn diagram for the BW design

The existence of two orthogonal dimensions to the analysis of variance 
justifies the use of a two-part Venn diagram to represent it diagrammati- 
cally (Fig. 12.2).

Between subjects. Within subjects.

total =1261 total = 160
Fig. 12.2 Venn diagram for analysis of variance for BW design.

12.2.5 Size of eiTect for the BW design

Because of the existence of distinct ‘between’ and ‘within’ dimensions in 
the BW design, the size of an effect is expressed as a proportion of the 
appropriate total SS.
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Therefore the proportions of SS explained by stimulus, conditions and 
interaction are, respectively,

95 12 35
-=7.53% tt7t=7.50% —  = 21.88%

1261 160 160

12.3 EXAMPLE OF A WW DESIGN

12.3.1 Introduction

In a study of the effect of spectacle-wearing on recognition of faces, 10 
randomly selected subjects were each shown 60 photographs of faces, 
30 male and 30 female. Within each set of 30 photographs, half were 
of faces wearing spectacles and half were of faces not wearing spec­
tacles.

The factors were:

spectacles (2 levels, within-subjects) 
sex (2 levels, within-subjects)

The mean numbers of photographs correctly recognized in each combi­
nation of conditions are set out in Table 12.4. The layout of the means table 
and its interpretation for the WW design follow the same principles as for 
the BB and BW designs. The effects are displayed as bar charts in Fig. 12.3. 
From the graphs in Fig. 12.3 it is evident that, in this sample, wearing 
spectacles makes it harder to recognize a face. Also, male faces are easier to 
recognize than female faces, and there is an interaction. The interaction 
shows that it is mostly for females that spectacles make recognition more 
difficult. There is hardly any effect of spectacle-wearing on recognition for 
male faces.

Table 12.4 Mean numbers of photographs correctly recognized

Spectacles No spectacles Means

Male faces 10.80 11.05 10.925
Female faces 8.00 11.10 9.550

Means 9.4 11.075 10.2375

An analysis of variance is required before statements can be made about 
the presence of effects in the population.

12.3.2 Analysis of variance for the WW design

The summary table for analysis of variance is given in Table 12.5.
The rules for the analysis of variance of the WW design will be dealt with 

in section 12.4.
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(a) Effect of sex. (b) Effect of spectacles. 
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Fig. 12.3 WW design - mean numbers of photographs recognized. 

12.3.3 Tests of significance for the WW design 

The basic analysis of variance in Table 12.5 is obtained from most of the 
well-known statistical packages for computers (Appendix A). It makes 
available tests of hypothesis about the existence in the population of 
effects due to the two factors and their interaction. It is seen that both 
main effects and their interaction are statistically significant at the 0.05 
level. 

12.3.4 Venn diagram for the WW design 

There should be different sections of the Venn diagram for the 'between' 
and 'within' portions of the total SS to indicate their independence. The 
between part is, however, of little interest, since it consists entirely of 
residual or unexplained variation. Figure 12.4 displays the Venn diagram 
for the WW example experiment. 
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Table 12.5 Analysis of variance for the WW design 

Source df 

Spectacles 1 
Sex 1 
Spectacles x Sex 1 

Subjects 9 
Subjects x Spectacles 9 
Subjects x Sex 9 
Subjects x Spectacles x Sex 9 

Total 39 

F. is the 0.05 critical value 

Between subjects. 

subjects= 91.28 

total= 91.28 

Type ss MS MSerror 

w 28.06 28.06 5.188 
w 18.91 18.91 0.5404 
w 20.31 20.31 0.4933 

91.28 not needed 
46.69 5.188 
4.864 0.5404 
4.440 0.4933 

214.554 

Within subjects. 

6 

Q 
sex\0 O

pectacles 

G spectacles x sex 

residual= 55.99 

total= 123.27 

Fig. 12.4 Venn diagram for analysis of variance for WW design. 

12.3.5 Sizes of effects for the WW design 

F F. 
5.41 5.12 

34.99 5.12 
41.17 5.12 

The sizes of the effects of both factors and their interaction are obtained by 
expressing their SS s as proportions of the total SS within-subjects. The 
total SS within-subjects is the overall total SS minus the between-subjects 
SS. This comes to 214.554-91.28 = 123.274. 

Therefore the proportions of SS explained by spectacles, sex and interac­
tion are, respectively, 

28.06 22 0/ 

123.274 ·7 
/O 

18.91 
123.274 15•3% 

20.31 
123.274 16·5% 

12.4 OVERVIEW OF RULES FOR THE ANOV A 
SUMMARY TABLE FOR DESIGNS BB, BW AND WW 

12.4.1 Terms in the model (sources of variation) for all two-factor designs 

The descriptions that follow are summarized in tabular form below. All 
three two-factor designs contain terms for each of the two factors and 
their interaction. In addition, they all contain a term which represents the 



152 Between- and within-subjects factors

variation between individual subjects. In the BB design this is called 
within groups or subjects within groups. In the design WW it is called 
subjects. In the design BW it is called either subjects or subjects within 
groups.

Finally, there are terms representing the interaction of subjects with any 
within-subject terms in the design. These all correspond to some form of 
reliability variation.

The complete picture, using an obvious notation, is:

BB BW WW

Factor B1 Factor B Factor W1
Factor B2 Factor W Factor W2
Interaction B1 x B2 Interaction B x W Interaction W1 x W2

within groups subjects within groups subjects

interaction: interactions:
subjects x W subjects x W1 

subjects x W2 
subjects x W1 x W2

12.4.2 Degrees of freedom and F-test for all two-factor designs

The degrees of freedom (df) are obtained according to the rules set out 
here:

for the effect of a factor =  (no. of levels —1) 
for interaction of factor 1 with factor 2 =(df factor 1) (df factor 2) 
for subjects =  (no. of groups of subjects) (no. of subjects per group — 1) 
for interaction of subjects with a factor=(<2/ subjects) (df factor)

Note that a useful check is provided by using the fact that the d /s  in the 
table must add up to the d f  of the total SS. This is easy to obtain as it is 
just one less than the number of measurements on the dependent variable 
obtained in the experiment.

Mean squares

Mean squares are formed for each term in the usual way by dividing the SS 
by the df:

F-test

The F-test is formed in the usual way by dividing the MS of the term to be 
tested by the appropriate error MS:



Tests of significance 153

12.4.3 Choice of error M S  for all two-factor designs

The denominator for calculation of the F-test is selected according to the 
following rules:

1. For the effect of a between-subjects factor, M S„ ror is M Ssubjects (also 
known as MS within-groups).

2. For the effect of a within-subjects factor, M S„ ror is MSsabjectsx tacior.
3. For the interaction of factor 1 with factor 2 the appropriate error term 

is set out in this table:

Factor 1 Factor 2 Error term

between between MSwit hin.groUPs
between within Af ̂ subjects x f actor 2

within between MSsubje ctsx factor 1

Within W ithin M  S subjects x factor 1 x factor 2

Complete listing o f error terms

For each of the three designs the factors and interaction in the top part of 
the table are linked by numbers (1), (2), etc. to the appropriate sources of 
error in the lower parts. These sources of error serve as the denominator or 
error M S  for the F-test.

BB

Factor B1 (1)
Factor B2 (1) 
Interaction B1 x B2(l)
(1) within groups

BW

Factor B (1)
Factor W (2) 
Interaction B x W (2)
(1) subjects within 

groups
interaction:

(2) subjects x W

WW

Factor W1 (2)
Factor W2 (3) 
Interaction W1 x W2(4)
(1) subjects

interactions:
(2) subjects x W1
(3) subjects x W2
(4) subjects x W1 x W2

12.5 TESTS OF SIGNIFICANCE FOR SIMPLE EFFECTS IN 
BW AND WW DESIGNS

12.5.1 Introduction

The concept of simple effect was introduced in section 2.3.1. The test of 
significance and a numerical example of simple effect in a BB design was 
introduced in section 6.4.3. The concept and technique apply equally in 
designs which include one or more within-subjects factors except for a
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detail of the test of significance. For some tests a pooled M Senor has to be 
calculated.

12.5.2 Calculation of SS  of simple effect

The appropriate row or column of means, .having been identified, is used to 
calculate the SS by the standard procedure. This procedure is described in 
sections 6.4.2 and 6.4.3 for between-subjects factors and in section 5.4.3 for 
within-subjects factors.

Examples o f simple effects in BW  design

(a) Suppose, in the above BW reaction time example in Table 12.2, that 
there is interest in the simple effect of conditions at the rounded level of 
stimulus. The appropriate row of means is:

(9.83 8.71)

This is transformed into a row of deviations which add to zero by sub­
tracting from each mean the mean of the means in the row. This gives

(0.56 -0.56)

These deviations are squared and added and the result multiplied by n, 
where n is the number of individual measurements contributing to each 
mean in the row. Here n is 10, since 9.83 is the mean of 10 subjects’ reaction 
times. This gives:

SS = 10(0.562 + ( -  0.56)2) = 6.272

The degrees of freedom, following the usual rule, are one less than the 
number of means in the row. Here d f = 1. Hence MS  for the simple effect is 
SS /d f=6.272.

(b) Consider the simple effect of stimulus at the control level of condi­
tions. The relevant column of means is

(9.83 10.73 8.91)

which as deviations is

(0.01 0.91 -0.91)

Thus

SS= 10(0.012 + 0.912 + (—0.91)2) = 16.563

with two degrees of freedom. Hence the MS for this simple effect is 
16.563/2 =  8.2815.
For both examples (a) and (b) the identification of the appropriate M Serror 
for calculation of the F-ratio requires more care than in previous applica­
tions. The next section addresses this.
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12.5.3 Identification of M Smor for the simple effect

M SeTror depends on the design. The three two-factor designs are dealt with 
separately.

MS error in the BB design

All tests, including those of simple effects, use MSwithin-grouPs (which is also
knOWn as A f S subjects within-groups Of aS M S su b jec ts )-

MS error in the BW  design

Factor W is within-subjects (repeated measures). Factor B is between- 
subjects (independent groups).

For a simple effect among the means of the within-subjects factor (at 
some particular level of factor B), use MSsubjectsxw (i*e. the same error MS 
used in the F-test of factor W).

For a simple effect among the means of the between-subjects factor (at 
some particular level of factor W), use the specially constructed MS formed 
by pooling Af Subjects und M SsubjectsxW

MQ  ^ 'subjects  SS subjects x W
Jyt Spooled ~  ~T?  . j f(*J subjects +  UJ subjects x W

Examples from the BW  design

(a) For the effect of conditions at the rounded level of stimulus it has already 
been shown that MS for the simple effect is 6.272. Since conditions is 
within-subjects, subjects x W forms the appropriate MSerror- Thus the test of 
significance is as follows:

F = 6.272/4.2 =1.49

This has to exceed the critical F on 1 and 27 degrees of freedom. Fc = 4.21; 
do not reject H 0.

(b) For the simple effect of stimulus at the control level of conditions, it 
has already been shown, in section 12.5.2, that the MS is 8.2815. Since 
stimulus is between-subjects the pooled A f 5 e r r o r  is required. The above 
formula gives:

1166 + 113
M <Sp00ied — 27 + 27 —

The degrees of freedom of MSpooled can be taken, for a rough approxi­
mation, a$ the mean of the d f  s of the constituent M S s. In this case it is 
(27 + 27)/2, which is 27.

(A better approximation (Satterthwaite, 1946) is calculated from a formula 
given in Appendix D. It gives the d f  as 32.)

This leads to F = 8.2815/23.685 = 0.35, which has to exceed Fc with 2 and 
27 degrees of freedom. Fc = 3.35; do not reject H 0.
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M S error in the W W  design

All tests on simple effects use pooled MS error terms.
Suppose the factors are known as W1 and W2. For the simple effect 

among the means of factor W1 (at some particular level of factor W2), use 
the MS formed by pooling MSsubjectsxwi and MSsubjectsxwixW2 :

 S ̂ subjects x W l “I" SS subjects x W1 x W2
■/Vi Spooled t r T~Tf

« /  subjects x W 1 T « ;  subjects x W1 x W2

A rough approximation for the d f  for M Spooied may be taken as the mean of 
S u b je c ts  xwi and d/subjects x w i  x w 2 - Alternatively, a better approximation is 
described in Appendix D.

12.5.4 Summary of procedure for tests of simple effects

The test is carried out by calculating

P _ M S  for simple effect 
appropriate M Strrot

where MS for the simple effect almost always has to be calculated by hand 
(see section 6.4.3 for an example of calculation of this M S  from the means 
which describe the effect). MSerror is either taken directly from the overall 
(omnibus) ANOVA or is a pooled MS based on terms from the overall 
ANOVA.

F, as calculated above, must be compared with Fc, the critical value of F 
based on the simple effect d f  and the error d f  The simple effect d f  is just 
(no. of levels —1). The d f  of the error MS is taken from the row of the 
ANOVA table from which the error MS itself was taken. If the pooled MS 
is used, its d f  can be taken, for a rough approximation, to be the average of 
the two d f  s on which it is based (see appendix D for a better approx­
imation).

The pro forma in section 12.6 should be copied and used as an aid to 
calculating the significance test of simple effects in two-factor designs.

12.6 CALCULATION PRO FORMA FOR SIMPLE EFFECTS IN 
TWO-FACTOR DESIGNS

1. Identify the set of means whose differences are to be tested.

M eans:_________ _________ _________ _________

2. Each of these means is obtained as the average of n measurements.

Note n=_________

3. Convert the set of means in step 1 into deviations by subtracting from each 
the overall mean of the set (if it is not already available calculate it by 
averaging the set of means by hand).

Deviations:
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4. Calculate SS for the simple effect as in section 6.4.2. 

SS = n{sum of squares of deviations)=________

5. Convert the SS into an MS by dividing by the appropriate degrees of 
freedom (df is number of means in the set less one).

MS =_________
6. Identify the appropriate MSerror from the overall ANOVA summary table. 

This follows the rules set out in section 12.5.3. Decide whether the design is 
BB, BW or WW.

M S e rror =  -

7. Calculate F and hence test significance of the simple effect.

MS ___________________
M S error

d f  for numerator=_________ d f  for denom inator_________  (The
df  of MSerror either comes with it directly from the overall ANOVA table, 
or, if a pooled MSerror has been calculated, d f is calculated as an average of 
the two relevant d f s for a rough approximation. See Appendix D for a 
better approximation.

Obtain Fc from Appendix F.2.

Fc =______
If F exceeds Fc with the appropriate d f  you can decide to reject H0 and 

conclude that the factor in question has an effect at the particular level of 
the other factor.

12.7 CONTRASTS AND COMPARISONS IN THE 
BW AND WW DESIGNS

Contrasts and comparisons may be tested among the levels of the factors in the 
BW and WW designs in the same way as in the one-factor designs, as discussed 
in Chapter 8.

The only area of possible difficulty is the identification of the appropriate 
error MS for the test of significance. The simple rule is that the same MSerror is 
used for testing a contrast among the levels of a factor as is used for testing 
the main effect of the factor. This is tabulated in Table 12.6. Note that 
MSsubjectsx factor was referred to as MSreliability in Chapter 5 and section 8.2.6.

Table 12.6 MSerror for test of contrast in BW or WW design

a priori a posteriori

Between-subjects M S subjects M S subjects
Within-subjects M S subjects x factor N/A

As mentioned in Chapter 8, no a posteriori comparisons are available for 
within-subjects factors.
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12.7.1 Example of BW design

Consider again the reaction time example of section 12.2.1. Suppose there 
was a requirement to test the contrast of rounded and straight levels of 
stimulus, considered together, with the irregular level. The linear contrast 
function would have the value

( - 1)(9.27)+ ( - 1)(12.04) + (+  2)(9.48) = -  2.35
and SS the value

12 + 1 +2
The multiplier n has the value 20. This is because each mean, such as 9.27, 
is based on 20 measurements of reaction time.

The appropriate error MS is MSsubjects> since stimulus is a between- 
subjects factor and so tested using MSsubjects (also known as MSwithin-groups)- 

Hence F=  18.41/43.2 = 0.426 with 1 and 27 degrees of freedom. Fc is 4.21; 
do not reject H 0.

For the a posteriori version of this test the Scheffe adjusted F would be 
(2)F(2,27), i.e. (2)(3.35) =  6.7 at the 0.05 level of significance. Note that as in 
the single-factor design, the Scheffe adjusted Fc is just (k— 1) times the 
critical F used in the test of the main effect.

12.8 EXERCISES

12.1 Eight subjects were divided into two groups of four. Each group was 
administered a different drug treatment and then each subject undertook 
three learning tasks. Completion times (in seconds) were recorded and are 
shown in the table.

Tasks Main

Subject T1 T2 T3 Mean
eneci
mean

Drug A 1 32 30 17 26.33
2 34 26 22 27.33
3 28 24 19 23.67
4 32 27 21 26.67

Mean 31.50 26.75 19.75 26.00

Drug B 5 27 26 18 23.67
6 24 25 17 22.00
7 30 23 17 23.33
8 28 29 20 25.67

Mean 27.25 25.75 18.00 23.67

Main effect mean 29.375 26.250 18.875
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The sums of squares for the analysis of variance are:

Source SS

Drugs 32.67
Tasks 465.08
Drugs x tasks 11.58
Subjects 43.95
Subjects x tasks 52.05

Total 605.33

(a) Identify the degrees of freedom, complete the ANOVA summary table 
and carry out the F-tests for main effects and interaction.

(b) Use appropriate graphs to display the main effects and their interac­
tion, whether significant or not.

(c) Calculate the SS for the simple effect of task for Drug A and complete 
the F-test.

(d) Carry out an a priori comparison of Task 1 against Task 2.
(e) Briefly summarize the findings of the above analysis.

12.2 An experiment was carried out on movement control. Six subjects, all 
right-handed, having normal eyesight, male and aged 20 to 23 years were 
tested under all combinations of two experimental factors.

Subjects were required to draw lines of four different lengths (16 cm, 
20 cm, 24 cm and 32 cm) and in eight different directions (0, 35, 90, 145,180, 
215, 270 and 325 degrees).

The dependent variable was the closest distance of the drawn line to a 
target point (error distance).

The statistical significance of the effects of factors length and direction 
and their interaction were investigated by analysis of variance.

The sums of squares (SS s) were:

Source SS Source SS

Length (L) 5.70 S x L 13.59
Direction (D) 15.63 S x D 23.64
L x D 14.53 S x L x D 54.35
Subjects (S) 28.34

(a) Complete all tests of significance.
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(b) Given that the mean error distance in cm at the various lengths was:

Length Mean error distance

16 1.27
20 1.34
24 1.40
32 1.72

(i) Carry out an a priori test for trend of increasing error distance with 
greater length.

(ii) Carry out an a priori test of the comparison of the mean error 
distance for the three shorter lengths (16, 20, 24 cm) with the 
longest length (32 cm).

(c) Give your view of the value of the selection criteria of the subjects.

12.3 Obtain the values of the terms in the model for the WW design based 
on the means in Table 12.4.
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13.1 INTRODUCTION

Three-factor designs are a direct development of the two-factor designs that 
were dealt with in Chapters 6 and 12. They require of their users increased 
attention to organizing and presenting the results and minor extensions of 
the ideas of interaction and simple effects.

The treatment in this section differs from that in Chapter 6 in that no 
account is given either of the underlying logic of the tests of significance or 
of the formulae for hand calculation. The former follows from that of the 
one- and two-factor designs; the latter should be left to a computer 
package.

The researcher may choose a between- or within-subjects arrange­
ment for each independent variable in a factorial design. For this reason 
the use of all combinations of between- and within-subjects factors is 
dealt with. There are four designs. They are referred to by the following 
shorthand:

BBB Three-factor independent groups design. All factors are between- 
subjects. A different group of subjects is exposed to each combina­
tion of levels of the three factors.

BBW Two between-subjects factors and one within-subjects factor. 
BWW One between-subjects factor and two within-subjects factors. 
WWW Three within-subjects factors. A single sample of subjects is taken 

through all combinations of levels of the three factors.

Three-factor designs are frequently required in professional research and 
increasingly in student projects now that computers are readily available to 
analyse the results. There are several reasons why they may be required in 
preference to simpler designs:

•  Economies are achieved through having the individual subjects respond 
to the combined effects of several factors. This may avoid the need to 
carry out separate experiments for each factor.

•  Information is obtained on interactions.
•  One or more blocking factors can be included to control the conditions 

under which the other factors are investigated. This can improve the 
power or permit a reduced sample size, (section 9.3)
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13.2 EXAMPLE OF BBB DESIGN

This example is taken from Maxwell and Delaney (1990).

13.2.1 Introduction

A study was carried out into the effects of three possible treatments, 
bio-feedback, drug therapy and diet therapy, on hypertension. (Hyperten­
sion is the condition characterized by clinically high levels of blood 
pressure.)

The treatment factors were:

Name Description of treatment Levels

drug medication drug X, drug Y, drug Z
biofeed physiological feedback present, absent
diet special diet present, absent

All 12 combinations of the three treatments were included in the design. 
This makes a 3 x 2 x 2  design with 12 treatment combinations (known as 
cells).

Because the treatments were expected to have long-term effects it was 
necessary to use a different group of subjects for each combination of 
treatment conditions. This is equivalent to saying that it is an independent 
groups or BBB design. Seventy-two subjects were randomly sampled from 
the chosen population and allocated randomly, six to each combination of 
treatments.

The design compares the three drug treatments and compares presence 
with absence for two non-drug treatments. All subjects experience one of 
the three drugs. There is no control group, kept free of all active treatments. 
The design does not permit a test of diet or biofeed in the absence of 
medication. This could be provided if one of the drugs were a placebo. (A 
placebo is a control treatment which, to the subjects and workers participa­
ting in the experiment, is indistinguishable from the drugs with active 
ingredients.)

13.2.2 Organizing and presenting the raw data

The blood pressure measurements on the individual subjects are presented 
in Table 13.1 The data in Table 13.1 represent values of the dependent 
variable. The independent variables are the levels of the three factors drug, 
biofeed and diet.

For entry into a computer it is necessary to create accompanying values 
for the independent variables, as is done in Table 13.2. In the table the 
values 1 and 2 stand for absent and present, respectively, for both diet and 
biofeed. The values 1, 2 and 3 represent the levels X, Y and Z of the drug 
factor.
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Table 13.1 Blood pressure data

Biofeed Biofeed Biofeed Drug X  Drug Y  Drug Z
and drug X  and drug Y and drug Z alone alone alone

Diet absent
170 186 180 173 189 202
175 194 187 194 194 228
165 201 199 197 217 190
180 215 170 190 206 206
160 219 204 176 199 224
158 209 194 198 195 204
Diet present
161 164 162 164 171 205
173 166 184 190 173 199
157 159 183 169 196 170
152 182 156 164 199 160
181 187 180 176 180 179
190 174 173 175 203 179

Table 13.2 Data for BBB example arranged for 
computer entry

Diet Biofeed Drug BP

1 2 1 170
1 2 1 175
1 2 1 165

1 3 160
1 3 179
1 3 179

13.2.3 Organizing and presenting the means

For designs with three or more factors, organizing and presenting the 
means demands careful attention. The straightforward approach (adopted 
by the SAS ANOVA program. Appendix A) is to list them separately for 
each main effect and interaction. This is reproduced in Table 13.3. In Table 
13.3. means tables are set out in the order:

diet
biofeed
diet x biofeed 
drug
diet x drug 
biofeed x drug 
diet x biofeed x drug

Table 13.3 also shows the number of blood pressure (BP) measurements 
averaged to give each mean. In the first row of the table the mean 
blood pressure of the 36 individuals in the diet absent condition is shown as
193.0.
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Table 13.3 Mean blood pressures for the BBB example

Diet Biofeed Drug No. Mean BP

Absent 36 193.0
Present 36 176.0

Present
Absent

36
36

179.2
189.8

Absent Present 18 187.0
Absent Absent 18 199.0

Present Present 18 171.3
Present Absent 18 180.7

Drug X 24 174.5
Drug Y 24 190.8
Drug Z 24 188.3

Absent Drug X 12 178.0
Absent Drug Y 12 202.0
Absent Drug Z 12 199.0

Present Drug X 12 171.0
Present Drug Y 12 179.5
Present Drug Z 12 177.5

Present Drug X 12 168.5
Present Drug Y 12 188.0
Present Drug Z 12 181.0

Absent Drug X 12 180.5
Absent Drug Y 12 193.5
Absent Drug Z 12 195.5

Absent Present Drug X 6 168.0
Absent Present Drug Y 6 204.0
Absent Present Drug Z 6 189.0

Absent Absent Drug X 6 188.0
Absent Absent Drug Y 6 200.0
Absent Absent Drug Z 6 209.0

Present Present Drug X 6 169.0
Present Present Drug Y 6 172.0
Present Present Drug Z 6 173.0

Present Absent Drug X 6 173.0
Present Absent Drug Y 6 187.0
Present Absent Drug Z 6 182.0

The more compact way to display the means involves setting them out in 
a series of two-way tables of rows and columns with row and column 
means appended. Table 13.4 is an example of this.
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Table 13.4 displays each set of main effect means twice and omits the 
three-way interaction, but is easy to use. Each of its three two-way tables is 
said to be ‘collapsed over the levels’ of one factor. For example, the first is 
the biofeed by diet table; it displays means obtained by collapsing over the 
levels of drug. In other words, factor drug has been ignored for the purposes 
of this two-way table. The other two tables are the result of collapsing over 
the levels of factors biofeed and diet.

The three-way interaction is conveniently displayed in a two-way table, 
as shown in Table 13.5.

Table 13.4 Mean blood pressures displayed in two-way interaction tables for the 
BBB example

Biofeed

Present Absent Means

Diet Absent
Present

187.0
171.3

199.0
180.7

193.0
176.0

Means 179.2 189.8

Drug

Drug X Drug Y Drug Z Means

Diet Absent 178.0 202.0 199.0 193.0
Present 171.0 179.5 177.5 176.0

Means 174.5 190.8 188.3

Drug

Drug X Drug Y Drug Z Means

Biofeed Present 168.5 188.0 181.0 179.2
Absent 180.5 193.5 195.5 189.8

Means 174.5 190.8 188.3

Table 13.5 Three-way interaction mean blood pressures displayed for the 
BBB example

Biofeed Drug X Drug Y Drug Z

Diet absent Present 168.0 204.0 189.0
Absent 188.0 200.0 209.0

Diet present Present 169.0 172.0 173.0
Absent 173.0 187.0 182.0

The means in Table 13.5 describe the three-way interaction or three- 
factor interaction. For example, the means

168.0 204.0 189.0
188.0 200.0 209.0
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describe the interaction between biofeed and drug in the absence of diet, 
whereas the following means:

169.0 172.0 173.0
173.0 187.0 182.0

describe the interaction between biofeed and drug in the presence of diet. 
See section 13.2.5 for the interpretation of this.

If there is no interest in the three-way interaction then the complete set of 
tables of two-way interactions with their marginal means, as shown in 
Table 13.4, is normally the preferred presentation.

13.2.4 The means in the form of an additive model

For consistency with the treatment of the two-factor design in Chapters 6 
and 12 there now follows a complete expression of the means in the form 
of the values of the components of the additive model. This differs from 
the earlier accounts in sections 6.7 and 12.2 in that it includes a term for 
the three-factor interaction. (In order to reduce the effects of rounding 
errors, all the deviations in the model are expressed to two places of 
decimals.)

score =  overall 4- biofeed 4- drug + diet + 
mean

r— io.ooi
= 184.5 + 6.25 > 4- ^

[present) I  y  I  [absent)
[absent J \ z \  [present}

biofeed x drug +  biofeed x diet + diet x drug +
f—0.67 +2.58 - l .9 l )  [-0.67 +  0.67) f-5 .00  +2.75 +  2.25)
[+0.67 -2 .58  +  1.91) [+0.67 -0.67J +  [+5.00 -2 .75  -2 .2 5 / +

(present) {X Y Z} [present) {abs. pres.} [absent) {X Y Z}
[absent J [absent/  [present/

biofeed x drug x diet 
diet absent diet present

[-3.33 +5.42 -2 .09 ] [+3.33 -5 .42  +2.09}[+3.3
[+3.33 -5 .42  +  2.091 [-3 .33  +5.42 -2 .0 9 /

[present) (X Y Z}
[absent /
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Hence the expected score for a person with biofeed {present}, drug {Y} and 
diet {absent} is

184.5 + ( -  5.33) + (+  6.25) + (+  8.50) +  (+  2.58) + ( -  0.67) + (+  2.75) + 
( + 5.42) = 204.0

This corresponds to the observed value in Tables 13.3 and 13.5.

13.2.5 Analysis of variance and interpretation

Analysis of variance for BBB example

The sums of squares for main effects and interactions are obtained from the 
deviations of the means or by using formulae similar to those in section
6.6.1. This is normally done by a statistical computer program (see 
Appendix A). The sums of squares within groups is obtained by pooling the 
sums of squares from every group of subjects. This follows the principles 
established for one- and two-factor designs.

The resulting analysis of variance summary table is set out in Table 13.6.

Table 13.6 ANOVA summary table for the BBB example

Source df SS MS F Significance

Diet 1 5202 5202 33.204 **
Biofeed 1 2048 2048 13.072 ♦♦
Drug
Diet x Biofeed

2 3675 1837.5 11.729 **
1 32 32 0.204 NS

Diet x Drug 2 903 451.5 2.882 NS
Biofeed x Drug 2 259 129.5 0.827 NS
Diet x Biofeed x Drug
Within groups

2
60

1075
9400

537.5
156.667

3.431 *

Total 71 22 594

* is significant at the 0.05 level 
** is significant at the 0.01 level 
NS is not significant.

The critical values of F that are relevant to the tests of significance are 
those based on (1, 60) and (2, 60) degrees of freedom. These are:

at the 0.05 level: 4.00 and 3.15 
at the 0.01 level: 7.08 and 4.98

The conclusion is that all three main effects are significant at the 0.01 level, 
none of the two-way interactions are significant and the three-way interac­
tion is significant at the 0.05 level.

Interactions in the BBB example

The existence of a three-way interaction greatly complicates the interpreta­
tion. It implies that two-way interactions cannot be taken at face value.
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Consider the interaction diet x biofeed. It is not significant, and the 
interaction diagram in Fig. 13.1 shows the parallel lines characteristic of no 

present ~bsent 

b1ofeed 

Fig. 13.1 Interaction diagram - diet x biofeed 

interaction. This implies that the benefit of bio-feedback is the same 
whether or not the diet is taken. 

However, the meaning of three-way interaction is that the interaction 
between any two of the factors is different at the different levels of the third 
factor. 

Consider the diet x biofeed interaction diagrams obtained separately 
for the data from each of the drugs X, Y and Z. These are shown in Fig. 
13.2. They are known as the simple interaction effects of diet with biofeed. 

There is a marked contrast between the diagrams for drugs X andY. For 
drug X the diet effect is greater at the biofeed absent level, whereas for drug 
Y the diet effect is greater at the biofeed present level. This implies that no 
clear statement can be made about the overall diet x biofeed interaction. 
Rather, the three simple interaction effects need to be reported and tested 
for statistical significance. The technique for this is dealt with in section 
13.5.4. 

The same discussion could have taken place concerning either the diet x 
drug or the biofeed x drug interactions. The existence of a significant 
three-way interaction implies that none of the overall two-way interactions 
is a coherent concept. All of them should be dealt with as separate simple 
interaction effects. 

Main and simple effects in the BBB example 

Significant interactions undermine the coherence of the concept of the main 
effect of a factor. Here the main effects are very strong. Diet, biofeed and 
drug, respectively, account for 23%, 9% and 16% of the total SS of 22 594, 
whereas the interactions altogether only account for 10%. 

However, some of the simple effects may be interesting. Note that there 
are two levels of simple effect in the three-factor design: first-order simple 
effects, in which one of the other factors is fixed at a particular level, and 



lnteroctlon diogrom -diet by biofeed for drug X. 

~ 
::J ., ., .. .... 
c. 
"C 
0 
0 
:;; 
c ., .. 
E 

190 

180 

170 ~ drug X-diet obsent 

drug X-diet present 

160~----~~------------~------

present obsent 

blofeed 

lnteroction diogrem- diet by biofeed for drug V. 

210 

.. 200 -.... 
::J ., ., 
~ 
c. 
"C 190 
0 
0 
:;; 
c ., 

180 .. 
E 

-- drug V-diet obsent 

• drug V-diet present 

170 
present obsent 

biofeed 

lnteroction diogrom -diet by biofeed for drug Z. 

210 

.. 200 .... 
::J ., ., .. .... 
c. 
"C 
0 

190 
0 
:;; 1!1 drug Z-diet obsent c 

------
., 

180 drug Z-d1 et present .. 
E 

170 
present obsent 

biofeed 

Fig. 13.2 Interaction diagrams - diet x biofeed for drugs X, Y and Z 

Example of BBW design llt691 



170 Three-factor designs

second-order simple effects, in which both of the other factors are fixed at 
particular levels.

For example, consider the simple effect of drug for diet absent. This is a 
first-order simple effect represented by the means 178.0, 202.0 and 199.0. 
Consider the simple effect of drug for diet absent and biofeed present. This is a 
second-order simple effect represented by the means 168.0, 204.0 and 189.0. 
The tests of significance of simple effects are dealt with in section 13.5.2.

A complete analysis of this data can be found in Maxwell and Delaney 
(1990, pp. 325-38).

13.3 EXAMPLE OF A BBW DESIGN

This example is loosely based on Shore (1958) and given consideration in 
Winer (1991).

An experimenter was interested in evaluating the effect of anxiety and 
muscular tension on a learning task.

Subjects who scored extremely low on a scale measuring manifest anxiety 
are assigned to level 1 and those who scored extremely high are assigned to 
level 2 of the anxiety factor.

Other subjects were excluded from the experiment.
The tension factor is defined by pressure required to be exerted on a 

dynamometer. One half of the low-anxiety subjects are assigned at random to 
the low-tension condition; the other half are assigned to the high-tension 
condition. The high-anxiety subjects are divided in a similar manner. Subjects 
carry out the learning task once a day for four successive days. The dependent 
variable is the number of errors in the tests which take place at the conclusion 
of each day’s learning task.

The results are presented in Table 13.7. Note that the first two columns 
of Table 13.7 represent levels of the between-subjects factors anxiety and

Table 13.7 Data for the BBW example

Anxiety Tension Subject no.

1
d.v.

Occasion

2 3
d.v. d.v.

4
d.v.

1 1 1 18 14 12 6
1 1 2 19 12 8 4
1 1 3 14 10 6 2
1 2 4 16 12 10 4
1 2 5 12 8 6 2
1 2 6 18 10 5 1
2 1 7 16 10 8 4
2 1 8 18 8 4 1
2 1 9 16 12 6 2
2 2 10 19 16 10 8
2 2 11 16 14 10 9
2 2 12 16 12 8 8
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Table 13.8 Means for interactions for the BBW example

Occasion

1 2 3 4 Means

Anxiety Low 16.17 11.00 7.83 3.17 9.54
High 16.83 12.00 7.67 5.33 10.46

Means 16.50 11.50 7.75 4.25

Occasion

1 2 3 4 Means

Tension Low 16.83 11.00 7.33 3.17 9.58
High 16.17 12.00 8.17 5.33 10.42

Means 16.50 11.50 7.75 4.25

Anxiety

Low High Means

Tension Low 10.42 8.67 9.54
High 8.75 12.17 10.46

Means 9.58 10.42

Table 13.9 Summary of analysis of variance for the BBW example

Source df SS MS M Se rror F P

Anxiety x Tension 1 80.1 80.1 10.3 7.77 0.0237
Anxiety 1 10.1 10.1 10.3 0.98 0.3517
Tension 1 8.33 8.33 10.3 0.81 0.3949
Subjects
Occasion

8 82.5 10.3
3 991.5 330.5 2.17 152.30 0.0001

Occasion x Anxiety x Tension 3 12.8 4.25 2.17 1.96 0.1477
Occasion x Anxiety 
Occasion x Tension

3 8.42 2.81 2.17 1.29 0.3003
3 12.2 4.06 2.17 1.87 0.1624

Occasion x Subjects 24 52.2 2.17

Total 47

tension. The within-subjects factor, occasion, is not represented in the 
same way. Rather, its four levels appear implicitly in the table, each 
represented by a column of scores of the dependent variable. Particular 
attention is required when such data is entered into a computer.

The means are set out in Table 13.8. The three-way interaction is omitted.
The analysis of variance summary is set out in Table 13.9. Note that the 

only statistically significant effects are the main effect of occasion and the 
interaction of anxiety with tension.
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The significant effects are represented graphically in Figs 13.3 and 13.4. 
The absence of a statistically significant three-way interaction implies that 
the two-way interaction of anxiety x tension in Fig. 13.3 may be assumed to 
apply to each of the four occasions. 
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Fig. 13.3 Interaction diagram - anxiety x tension. 
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Fig. 13.4 Bar chart for main effect of occasion. 

13.4 EXAMPLE OF A BWW DESIGN 

m low emclety 

• high enKtety 

4 

As part of a research programme into the nature of dyslexia an experiment 
was carried out into the effect of speed of presentation of numbers on 
memory. Twelve dyslexic children and 12 normal children matched in pairs 
for mental age and digit memory ability were presented with three-digit 
numbers at four different speeds. The time intervals between numbers were 
0.38, 1.00, 3.00 and 10.00 seconds. 

Each subject was shown eight three-digit numbers at each speed. The order 
of presentation of the speeds was randomized. Mean error scores were 
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obtained on each digit position at each speed. These 12 mean error scores 
for each child were the units for analysis. There were 288 such units in the 
analysis.

The design is a 2 x 3 x 4  with repeated measures on two factors. The 
factors are:

Factor Description Type Levels

group type of child between 2
digit position of digit in number within 3
speed speed of presentation within 4

The mean error scores at the various combinations of levels of the three 
factors are set out in Table 13.10, the means which describe the three-way 
interaction are set out in Table 13.11, and the summary of the analysis of 
variance is set out in Table 13.12. For comments on these results see section 
13.5.

Table 13.10 Mean error scores displayed in two-way interaction tables for 
the BWW example

n = 36 per cell

1

Speed

2 3 4

Means

Group Dyslexic 2.53 2.37 1.97 1.67 2.13
Normal 1.87 1.30 1.10 1.40 1.42

Means 2.20 1.83 1.53 1.53

n = 24 per cell Speed Means

1 2  3 4

Digit First 0.85 0.80 1.10 0.65 0.85
Second 2.00 1.60 1.30 1.70 1.65
Third 3.75 3.10 2.20 2.25 2.83

Means 2.20 1.83 1.53 1.53

n = 48 per cell

First

Digit

Second Third

Means

Group Dyslexic 1.20 2.10 3.10 2.13
Normal 0.50 1.20 2.55 1.42

Means 0.85 1.65 2.83
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Table 13.11 Three-way interaction mean error scores displayed in a 
matrix for the BWW example

n= 12 per cell Speed

Digit Group 1 2 3 4

First Dyslexic 1.00 1.40 1.60 0.80
Normal 0.70 0.20 0.60 0.50

Second Dyslexic 2.90 2.10 1.50 1.90
Normal 1.10 1.10 1.10 1.50

Third Dyslexic 3.70 3.60 2.80 2.30
Normal 3.80 2.60 1.60 2.20

Table 13.12 Analysis of variance summary for the BWW example

Source df SS MS Error term F

Group 1 36.98 36.98 subjects 17.7
Speed 3 21.66 7.22 subjects x speed 4.7
Digit 2 190.48 95.24 subjects x digit 104.7
Group x Speed 3 6.30 2.10 subjects x speed 1.4
Group x Digit 2 1.48 0.74 subjects x digit 0.8
Speed x Digit 6 26.52 4.42 subjects x speed x digit 2.0
Group x Speed x Digit 6 13.08 2.18 subjects x speed x digit 1.0
Subjects 22 45.98 2.09
Subjects x Speed 66 101.64 1.54
Subjects x Digit 44 40.04 0.91
Subjects x Speed x Digit 132 293.04 2.22

Total 287

13.5 SUMMARY OF RULES FOR ANALYSIS OF BBB, BBW, BWW 
AND WWW DESIGNS

13.5.1 Introduction

The following is an account of main, simple and interaction effects in 
three-factor balanced designs, in which any of the factors may be within- 
subjects (repeated measures).

All examples are from the BWW memory-for-digits example in section
13.4.

13.5.2 Main effects

Definition

The main effect is a comparison among the mean scores at the various 
levels of a factor. Scores are averaged across all levels of other factors. In 
other words, the other factors are collapsed out.

For example: the main effect of digit position (digit) is the comparison
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among the means, each based on 96 measurements, of the scores obtained 
in the first, second and third digit position in the number.

Numerical representation

1. It is represented as a set of means, e.g. digit effect is 0.85, 1.65, 2.83.
2. It can also be represented as a set of deviations from the overall mean, 

1.775, (tu t2, t3, ...) which add to zero, e.g. (—0.925, —0.125, 1.055).

Graphical representation

This is a bar chart of means, as shown in Fig. 13.5.

first second
digit

Fig. 13.5 Bar chart for digit main effect.

third

Sums of squares (SS)

The SS is defined in the usual way as 
n{t\ + £2 + 13 H— )

where n is the number of measurements at each level of the factor and tu tl9 
etc. are the deviations representing the effect. For example, SS for 
digit = 96(0.9252 + 0.1252 +1.0552) = 190.49, as in the summary in Table 
13.12 (subject to rounding error).

Size of effect

In absolute terms, the size of the effect of a factor is represented by the SS of 
the factor, although the SS also includes an element of sampling fluctu­
ation. It can also, and more usefully, be expressed as a proportion of the 
total SS between-subjects or of the total SS within-subjects, whichever is 
appropriate.

The between-subjects sources of variance consist of the between-subjects 
factors, the interactions of the between-subjects factors with one-another 
and ‘subjects’ itself. ‘Subjects’ is also known as ‘subjects within groups’ or 
just as ‘within groups’ variation.
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The within-subjects sources of variance consist of the within-subjects 
factors and the interaction of any factor with a within-subjects factor. For 
example,

SS for digit =  190.48
total SS within-subjects =  21.66 +190.48 +  6.30 -I-1.48 + 26.52 +

13.08 +  101.64 +  40.04 +  293.04 
=  694.24

Hence digit accounts for 27% of the within-subjects variation.

Test o f significance

This is formed by dividing the MS of the factor by the appropriate MSe

M S(aciorF=
M S.

In BBS all effects use Al̂ within-groups as 
The other designs use MSsubjec«s (also known as MSsubJecu-withm-groups) as 

MSerror for between-subjects factors and MSfact0rx subjects as M Smm for 
within-subjects factors.

For example: test of digit using MSMbjKtexdigit as M Serror:

_ 95.24
F = w 104(S6

on (2, 44) degrees of freedom as in Table 13.12.

1333 Simple effects

Definition

Simple effects are conceptually the same as the main effect, except that the 
comparison is among the mean scores of the levels of a factor at a single 
level of one of the other factors, for a first-order simple effect, or at single 
levels of both the other factors for a second-order simple effect. An 
alternative name for the simple effect could be ‘partial main effect’.

For example, the simple effect of digit for the first level of speed will be 
based on means of the 24 scores for each digit position. This is a first-order 
simple effect and can be identified in the first column of the digit x speed 
part of Table 13.10. The simple effect of digit for the first level of speed for 
the dyslexic group is based on the means of the 12 scores for each digit 
position, at the first level of speed for the dyslexic group. This is a second- 
order simple effect and can be identified in the first column of Table 13.11.

Numerical representation

1. The simple effect is represented as a set of means, e.g. the simple effect of 
digit for the first level of speed as means is (0.85 2.00 3.75). The
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simple effect of digit for the first level of speed for the dyslexic group as 
means is (1.00 2.90 3.70).

2. The simple effect may also be represented as a set of deviations from the 
appropriate overall mean. For example, the simple effect of digit for the 
first level of speed as deviations is (—1.35 —0.20 1.55) (note that 
n =  24). The simple effect of digit for the first level of speed for the 
dyslexic group as deviations is (—1.53 0.37 1.17) (note that n = 12).

Graphical representation

The graphical representation is a bar chart of means; similar to that for the
main effect.

Sums of squares
The SS is obtained from the deviations by the usual formula. For example, 
the simple effect of digit for the first level of speed is

SS= 24(( - 1 .35)2 +  ( -  0.20)2 + 1.552)
= 102.36

The simple effect of digit for the first level of speed for the dyslexic group is
SS= 12((-1.53)2+ 0.372 + 1.172)

=46.16
The multipliers are 24 and 12 for the first- and second-order simple 

effects, respectively, because they are the numbers of measurements on 
which are based the deviations.

Size o f effect
This follows the same rule as for the main effect. That is, it can be expressed 
as the absolute value of SS or as a proportion of the appropriate total SS.

Test of significance
F is calculated as the MS of the simple effect divided by the MSerror. The 
simple effect MS is just the SS divided by df d f is one less than the number 
of levels of the factor. The MSerror is the MSwithin-groups in the BBB design.

For other designs the procedures are fairly complicated. For these the 
reader is referred to Winer et al. (1991, pp. 529-31, 535-7 and 550-1).

13.5.4 Interaction effect

Definition
The interaction between two factors is identical to the concept introduced 
for the two-factor design in Chapters 6 and 12.

By collapsing over the levels of the third factor the design reduces to a 
two-factor design. The interaction thus defined has been discussed at length 
in Chapters 6 and 12.

For example, the digit by speed interaction is based on comparisons
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among the 12 means in the digit by speed means table. These means are 
each based on the scores of all 24 children under each combination of digit 
position and speed of presentation.

The interaction is the comparison among the simple effects of digit at the 
various levels of speed. If all the simple effects of digit are the same 
regardless of the level of speed, then there is no interaction.

Numerical representation

1. As a set of means:

Speed

1 2 3 4

Digit first 0.85 0.80 1.10 0.65
second 2.00 1.60 1.30 1.70
third 3.75 3.10 2.20 2.25

2. As a set of deviations:

T n t 12 t 13 T l4
T 2 i t 22 t 23 T 24
t 31 t 32 t 33 T 34

Speed

1

Digit first -0 .42 -0 .10  0.50 0.05
second —0.07 —0.10 —0.10 0.30
third 0.50 0.22 -0.38 -0.33

A method of calculating the deviations is described in section 6.4.4. An 
easier method is described in section 13.5.5.

Graphical representation

This is a plot of the appropriate means as previously illustrated. It is called 
an interaction diagram, or profile diagram. The scale of the vertical axis is 
the mean score. For example, the digit x speed plot is shown in Fig. 13.6.

Sums of squares

The SS is defined to be w(tii + t i 2  + t i 3 H — X where n is the
number of measurements at each combination of levels of the two factors. 

For example, for digit x speed,
SS = 24(0.422 + 0.102 + 0.502 + 0.052 + 0.072 + 0.102 + 0.102 + 0.302 +

0.502 + 0.222 + 0.382 + 0.332)
= 26.532

(subject to rounding errors) as in the ANOVA summary in Table 13.12.
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Fig. 13.6 Interaction diagram -  digit x speed.

Size of effect

In absolute terms this is given by the value of the SS. It can also be 
expressed as a proportion of the total SS between-subjects or of the total SS 
within-subjects, whichever is appropriate. Only if both component factors 
of the interaction are between-subjects is it appropriate to express the SS as 
a proportion of the between-subjects SS. If either or both factors are 
within-subjects the SS should be expressed as a proportion of the total 
within-subjects SS.

For example, the digit x speed effect accounts for 26.532/694.24 = 3.82% 
of the total within-subjects variation.

Test of significance

The F value is formed by dividing the MS of the interaction by the 
appropriate MSerror. Suppose we are interested in testing the A x B interac­
tion. The correct error term depends on whether factor A or B are within- 
or between-subjects. The rule is set out in this table:

A B Error term

between between M  ̂ subjects
between within M  ̂ subjects x B
within between M  Ssubjects x A
within within M  ̂ subjects x A x B

The df for the interaction is the product of the df s of the two component 
factors, e.g. for the test of digit x speed, df = (2) (3) =  6.

MS& igitx speed —26.532/6 — 4.422

MSdigit x  speed  4.422  ̂^
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The degrees of freedom are (6, 132) for the test. This leads to a critical F of 
2.10. H0 cannot be rejected.

13.5.5 Simple interaction effect

Definition

The simple interaction between two factors is the interaction between them 
at a single level of the third factor. For example, the interaction 
digit x speed for dyslexic children only is a comparison among the mean 
scores for the various combinations of levels of digit and speed, but only 
using data from the dyslexic children.

Numerical representation

1. As cell means:

Dyslexics only Speed

1 2 3 4

Digit first 1.00 1.40 1.60 0.80
second 2.90 2.10 1.50 1.90
third 3.70 3.60 2.80 2.30

2. As deviations.
The procedure for obtaining the deviations appropriate to an interac­

tion was described in section 6.4.4. However, a faster method is illustrated 
for the above example and described in steps 1 to 3 as follows.
Step 1 Set out an empty matrix with the row and column means and 
overall mean appropriate to the simple interaction.

Dyslexics only Speed Row
1 2 3 4 means

Digit first
second
third

1.20
2.10
3.10

Column means 2.53 2.37 1.97 1.67 2.13

Step 2 Fill in the expected values of the cell means based on the values 
of the row and column means according to the following rule:

expected value =  row mean + column mean —overall mean

For example, the expected value for the first digit position and speed level 1 
is

1.20+2.53-2.13 = 1.60
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The expected value for the second digit position and speed level 1 is

2.10 + 2.53-2.13 = 2.50

The complete array of expected values has to be obtained. The result is 
as follows:

Dyslexics only Speed

1 2 3 4

Digit first 1.60 1.44 1.04 0.74
second 2.50 2.34 1.94 1.64
third 3.50 3.34 2.94 2.64

Step 3 Subtract the expected values from the corresponding observed 
values to obtain the deviations.

For example, the deviation for the first digit position and speed level 1 is

1 .00 -1 .60= -0 .60

The deviation for the second digit position and speed level 1 is

2.90-2.50 = 0.40

The complete array of deviations follows:

Dyslexics only Speed

1 2 3 4

Digit first -0 .60 -0 .04 0.56 0.06
second 0.40 -0 .24 -0 .44 0.26
third 0.20 0.26 -0 .14 -0 .34

Graphical representation

Plot an interaction diagram as for the main interaction effect.

Sum of squares

This is the same as for the main interaction effect. For example, for 
digit x speed for dyslexics only:

SS =12((—0.60)2 + ( -  0.04)2 + • • • + 0.402 + • • • + 0.202 + • • •+( -  0.34)2)
= 12(1.4004)
= 16.80

Size of effect

This is expressed absolutely as SS and otherwise as a proportion of the 
appropriate total SS. If the two component factors of the interaction and



182 Three-factor designs

the factor whose level is specified are all between-subjects then the 
between-subjects total SS is appropriate. Otherwise the within-subjects 
total SS is appropriate.

For example, the simple interaction of digit x speed for the dyslexic 
children only accounts for 16.80/694.24 =  2.42% of the within-subjects 
variation.

Test of significance

The F value is formed by dividing the MS of the simple interaction by the 
appropriate MSerror. The M SerTor is M Swithin.groups for the BBB design. For 
other designs it is difficult to identify. The reader is referred to Winer et al 
(1991, section 7.4).

13.5.6 Contrasts and comparisons in three-factor designs

Introduction

Contrasts and comparisons may be tested among the levels of the factors in 
the three-factor designs in the same way as in the two-factor designs, as 
discussed in section 12.7.

The only area of possible difficulty is the identification of the appropriate 
error MS for the test of significance. The simple rule is that the same 
MSerror is used for testing a contrast among the levels of a factor as is 
used for testing the main effect of the factor. This is tabulated in section 
13.5.7.

As mentioned in Chapter 8 and section 12.7, no a posteriori comparisons 
are available for within-subjects factors.

Example o f a contrast in the BWWdesign

Consider again the example of the BWW experiment on errors in recall for 
digits in three-digit numbers. Suppose there was a requirement to test the a 
priori contrast of first and third digit positions against the second digit 
position (primacy and recency memory effect versus the other). The linear 
contrast function would have the value

( - 1)(0.85) + (+  2)(1.65) + ( - 1)(2.83) = -  0.38

and SS the value

(96)(0.38)2
l 2 + 22 + 1 r= 2.3104

The multiplier n has the value 96. This is because each mean, such as 0.85, 
is based on 96 units of measurement, i.e. the mean number of errors (which 
serves as the dependent variable).

The appropriate error MS is M Ssuhjectsxdigit since this is a within-subjects
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factor and so tested using MSsubjectsxfactor- This is the error MS used in the 
test of digit main effect.

Hence F = 2.310/0.91 = 2.538 with 1 and 44 degrees of freedom. Since F is 
less than Fc the decision is made not to reject H0.

13.5.7 Summary of error terms in three-factor designs

Using an obvious notation the error terms used to test the main effects and 
interactions are:

BBB Error terms 
within-groups

BBW Error terms 
subjects 
subjects x W

BWW Error terms 
subjects 
subjects xW l 
subjects x W2 
subjects x W l x  W2

WWW Error terms 
subjects xW l 
subjects x W2 
subjects x W3 
subjects xW l x W2 
subjects x W l x  W3 
subjects x W2 x W3 
subjects x W l x W 2 x W 3

Sources tested
all factors, interactions and simple 

effects
Sources tested 
Bl, B2, B1 x B2
W, W x Bl ,  WxB2,  W x B l x B 2
Sources tested 
B
Wl,  B x W l  
W2, B x W2 
Wl  x W2, B x Wl  x W2
Sources tested
Wl
W2
W3
Wl x W2 
Wl  x W3 
W2 x W3 
Wl  x W2 x W3

13.6 EXERCISES

13.1 A study of eye movements in dyslexic and normal children was 
designed as a factorial ANOVA with three factors all at two levels.

Factor A describes the type of child, level 1 for dyslexic, level 2 for
normal. There were 15 children of each type.

Factors B and C describe the conditions under which measure­
ments were made. Each child was tested at all levels of both factors B and 
C.

The dependent variable is the number of corrections in the movement of 
the eyes while they follow a moving spot.

The two levels of factor B describe the speed of movement of the spot, 
fast or slow.

The two levels of factor C describe the direction of travel of the spot, 
left-to-right or right-to-left.



184 Three-factor designs

The ANOVA summary table is set out below:

Source SS df
A 2.13 1
Subjects (s) 354.6 28
B 55.4 1
C 4.03 1
BC 7.75 1
AB 0.102 1
AC 0.833 1
ABC 0.169 1
sB 264.0 28
sC 13.2 28
sBC 7.07 28

Total 709.2 119

The tables of marginal means are set aut below:

Fast Slow Means

Dyslexic 4.175 2.758 3.467
Normal 3.850 2.550 3.200

Means 4.013 2.654

L to R R to L Means

Dyslexic 3.367 3.567 3.467
Normal 2.933 3.467 3.200

Means 3.150 3.517

L to R R to L Means

Fast 3.575 4.450 4.013
Slow 2.725 2.583 2.654

Means 3.150 3.517

(a) Carry out tests of significance of all factors and interactions.
(b) Summarize the findings in simple English.
(c) Represent on a bar chart the effect of speed for travel of the spot in 

direction R to L.

13.2 An experiment was carried out to assess the effects of sex, certain 
verbal and visual tasks and delay on recognition of odours presented 
during completion of the tasks.
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Male and female subjects were randomly allocated to one or other of the 
three conditions:

1. Verbal task
2. Visual task
3. No task

During completion of one of the tasks or the no-task condition, 12 odours 
were presented at 2-minute intervals. The order of presentation was 
randomized for each subject. Subjects were tested on their recognition of 
the 12 odours out of a collection of 30 odours. A score in the range 0 to 12 
was obtained which was the number of odours correctly identified (adjusted 
to take account of mis-identification). Subjects were tested one hour and 
one week after the initial presentation of the odours.

There were 4 male and 4 female subjects taking part in each of the 3 
conditions (24 subjects in total). The mean numbers of odours recalled at each 
combination of the levels of the independent variables are set out in Table A.

Table A

Condition Hour Week

1 3.50 7.00
Male 2 5.00 5.75 mean 6.042

3 8.25 6.75
1 6.75 4.50

Female 2 8.50 6.75 mean 7.500
3 10.25 8.25

Mean 7.042 6.500

Table B

Source

Sex
Condition
Sex x Condition
Occasion
Occasion x Sex
Occasion x Condition
Occasion x Sex x Condition
Subjects
Subjects x Occasion

df SS MS

1 25.5 25.5
2 70.8 35.4
2 7.5 7.5
1 3.5 3.5
1 25.5 25.5
2 11.3 5.65
2 14.0 7.0

18 173.1 9.62
18 35.1 1.95

Within the general aims of the research it was required to examine the 
following propositions:

(i) The conditions differ in their influence on the number of odours 
recalled.
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(ii) The extent to which recall diminishes over the first week is different for 
males and females.

(iii) The change in recall over the first week in condition 1 (verbal task) 
depends on sex.

(iv) In the control condition there is a reduction in recall over the first 
week.

By reference to Tables A and B for each of the propositions (i) to (iv):

(a) Display the appropriate means in a graph.
(b) Obtain the relevant SS and express it as a percentage of the appropri­

ate total SS.

For each of the propositions (i) and (ii):

(c) Perform the appropriate F-test of significance and report the results.



Appendix A: 
Hints on use of 

computer programs

This note is based on the author’s experience as a working statistician 
rather than on an exhaustive survey of available programs. Accordingly, 
many programs favoured by readers will not be mentioned. This does not 
imply anything about their suitability for analysing the designs dealt with 
in this book.

A.1 SAS and SPSS

These are available on a range of platforms including mainframe and 
personal computers. They are capable of carrying out all analyses dealt 
with in this book. Both require an above-average investment of effort by 
the new user, but that is the price to be paid for the comprehensive 
coverage and wealth of facilities provided. Many of the benefits of these 
systems of programs go to the user with a large amount of data who 
requires many analyses.

There is a degree of inconvenience associated with their use for analysis 
of simple effects and of within-subjects factors.

A.2 STATVIEW

This is designed for the Apple Macintosh. It is extremely easy to use and 
covers most of the more basic designs dealt with in the book. The 
limitations are that it cannot accept more than one within-subjects factor 
in a design, unbalanced designs or analysis of covariance.

A.3 SUPERANOVA

This is designed to be compatible with Statview. It is designed for the Apple 
Macintosh and is easy to use. It analyses all the designs dealt with in the 
book with the small exception that it does not provide a stepwise version 
of multiple regression.
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SuperANOVA is particularly useful for its handling of simple effects, 
unbalanced designs and for plotting bar charts and interaction diagrams.

A.4 MINITAB VERSION 8

This is available on most platforms including mainframes, IBM PCs and 
Apple Macintoshes. It can be used to analyse most of the designs dealt with 
in the text. An important exception is that it deals with designs with 
within-subjects factors in a different way. ‘Subject? has to be intro­
duced as a ‘random’ factor ‘nested’ under all between-subjects factors and 
‘crossed’ with all within-subjects factors. Otherwise it is easy to use and 
flexible. It is available at a reduced price in a student edition through 
bookshops.

A.5 BMDP

This is available for mainframe and IBM PC platforms. It can be used to 
analyse all designs dealt with in the text. The BMD suite of programs is 
particularly valuable for the user of designs which include within-subjects 
factors.

A.6 SYSTAT

This is designed for the Apple Macintosh. It is quite easy to use and can 
be used for analysis of all the designs dealt with in the text.

A.7 STATISTICA (CSS)

This is designed for the IBM PC. It can be used for analysis of all designs 
dealt with in the text.



Appendix B: 
Additional exercises for 

Chapters 5-13

CHAPTER 5

B5.1 Consider a single-factor repeated measures design in which there are 
three levels of the treatment factor and five subjects. The overall mean score 
on the dependent variable is 26.3 and the effects present in the design 
expressed as deviations from the overall mean are as follows:

Treatment factor: (+5.3, +2.9, —8.2)

Subjects:

Interaction:

S i --10 .3
s2 + 2 .5
S3 + 1 3 .4
S4 + 0 .2
S 5 - 5 .8

+  1.5 - 0 .9 - 0 . 6
+ 0 .3 +  1.7 - 2 . 0
- 2 . 4 - 2 . 0 + 4 .4
- 1 . 6 - 0 . 2 +  1.8
+ 2 .2 +  1.4 - 3 . 6

(a) Obtain the values of the scores obtained by subject number 1 under 
each of the three treatment levels. Sketch a bar chart to display these 
values.
Obtain the treatment effect as experienced by the first subject as a set 
of deviations from the overall mean.

(b) Identify the subject most affected and the subject least affected by the 
treatment factor.

(c) Calculate the SS s for the effect of the treatment factor and for the 
subject x treatment interaction. Complete the F-test for the treatment 
factor.

(d) Carry out an a priori test for trend for the treatment factor.

B5.2 Choice reaction times in tenths of a second were obtained for each of
four subjects in three different test conditions (Cl, C2 and C3).
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Each subject was tested under all three conditions in random order. The 
reaction times were:

Subject Cl C2 C3

1 12 8 8
2 7 5 6
3 15 12 5
4 10 8 6

Overall mean = 8.5.

(a) Express the subjects and conditions effects as sets of deviations.
(b) Remove the subjects and conditions effects and the overall mean from 

the reaction times so as to expose the subject x conditions interaction as 
an array of deviations.

(c) Comment on the extent to which individual subjects vary one from
another in their patterns of response to the conditions.

(d) Complete the ANOVA summary table and F-test by taking advantage
of the results of parts (a) and (b) of this question.

CHAPTER 6

B6.1 This exercise is based on data from Postman and Keppel (1977).
Mode of presentation of stimuli and mode of response were investigated 

for their effects on recall of pairing of items from a list. Two modes were 
used, picture (P) and word (W).

Eighteen subjects were assigned to each of four versions of the list. The 
first group of 18 subjects learned the list in picture mode and was tested 
one week later, again in picture mode. This is the P-P condition. The other 
three^groups underwent conditions P-W, W-P and W-W.

The mean numbers of items recalled correctly was:
P-P 9.94
P-W 19.06
W-P 12.39
W-W 15.06

Rearranged so as to display the effects of presentation and response through 
the appropriate marginal means, the means appear thus:

Response 

P W

Presentation P 9.94 19.06 14.50
W 12.39 15.06 13.725

11.165 17.06 14.113
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Rearranged again and expressed as deviations the means are displayed 
as an additive model thus:

[recall] , [+0.3875] , [-2 .9475] , . ,
{score} -  14113 +  { -0 .3875} +  {+2.947s} +  lnteract,on

Presentation Response
{p} {p}
{W} {W}

(a) Express interaction in the form of deviations appropriate for inclusion 
in the model.

(b) Given that the SS within-groups is 4095, calculate all other SSs, 
complete the ANOVA table and report the tests of significance of 
Presentation, Response and interaction.

(c) Summarize the results of the experiment in simple English and with 
appropriate sketch graphs.

(d) Does the mode of response make a significant difference to the recall 
when the presentation is in picture mode?

B6.2 An experiment was carried out to study the effects on body weight of 
four diets alone or combined with group discussion therapy.

Forty men who wished to lose weight were randomly allocated to groups 
of five. Each of the eight groups was randomly allocated to a unique 
combination of one of the diets and either discussion therapy or no dis­
cussion therapy. The men were weighed on starting the diet and again after 
following the diet for three months.

Weight loss was calculated by subtracting the final weight from the 
original weight of each man and was used as the dependent variable in the 
analysis of the results.

The mean weight lost in pounds by each group of men is set out in 
Table B.l.

Table B.1

Rows: therapy Columns: diet Means

1 2 3 4

Therapy 
No therapy

1 14.8
2 9.4

21.2
13.4

19.6
14.8

19.2
29.8

18.70
16.85

Means 12.1 17.3 17.2 24.5 17.775

(a) The following propositions were to be examined:

(i) Group discussion therapy helps men to lose weight.
(ii) The effect of diet on weight loss depends on whether or not the 

diet is accompanied by attendance at group therapy.

For each of these propositions:

• Sketch appropriate graphs to illustrate the effect.
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•  Choose the appropriate SS s from the ANOVA summary in Table B.2 
and use them to carry out the corresponding tests of significance.

•  Report the results in simple English.

Table B.2 Analysis of variance for 
weight loss

Source SS

Therapy 34.22
Diet 779.87
Therapy x Diet 529.28
Within-groups 187.60

Total 1530.97

(b) (i) Identify the largest of the simple effects of therapy and the smallest
of the simple effects of diet.

(ii) Test for significance the effect of diet in the absence of group 
discussion therapy.

(c) Discuss the implications of a significant interaction for the interpreta­
tion of main effects in designs such as the one used here.

B6.3 An experiment was carried out to investigate subjects’ perceptions of 
a fictitious member of the public (the target person) described as either 
young or old and as having reacted in an aggressive, passive or mixed way 
to an unwanted approach in the street.

The experimental subjects had to select traits from a list to describe the 
target person. The dependent variable is the percentage of the selected traits 
that are masculine (as rated previously by a panel).

A sample of 30 subjects was allocated at random, five to each of the six 
different combinations of descriptions.

The results, expressed as an additive model are:

mean f +17.4] f_ i q r ) f +1.3

s s a r  - 5 3 4 + i  z i i i +
traits

response age interaction

{aggressive 'j f young 1
passive > (old J

mixed j

(a) Obtain the appropriate means and express graphically the main effect 
of response and the interaction of response with age.

(b) Given that the SS within groups is 19 264.8, calculate further SSs and 
complete the summary table. Carry out the test of significance of 
response main effect.

(c) Test for significance the smallest simple effect of age.
(d) Summarize the main findings of the study in terms likely to be used by 

the experimenter.
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B6.4 The result of a two-factor experiment was expressed in terms of the
deviations of the main effects and interactions as:

—  * * g + {-S
Factor A Factor B Interaction A x B

(a) Calculate the score expected for a subject responding under the influ­
ence of the first level of factor A and the third level of factor B.

(b) Given that the experiment was an independent groups design with five 
subjects per group (hence 30 subjects in all) and on the basis of a simple 
calculation, decide which of factors A and B and their interaction 
makes the greatest contribution and which the smallest contribution to 
explaining the total variation in scores.

(c) If the two simple effects of factor B expressed as deviations are (2.93, 
—0.87, —2.07) and (—0.97, —1.37, 2.33), respectively, show that the SS 
interaction can be obtained as the variation of the simple effects from 
their mean.

(d) What well-known concept can be viewed as the average of the simple 
effects? Demonstrate this numerically.

(e) Explain what is meant by the statement that the factors A and B and 
their interaction make independent contributions to explaining the 
variation in scores of the dependent variable.

CHAPTER 7

B7.1 An experiment was carried out on the effect of practice on picture 
recognition. Twenty children were randomly allocated to two groups of ten. 
One group received practice, the other did not. Both groups were tested on 
recall of 40 pictures.

The mean numbers of pictures recalled in the two groups and their 
corresponding mean IQ scores were:

Condition group Mean recall Mean IQ

Practice 19.90 101.4
No-practice 15.80 96.0

IQ was to be used as a covariate. The SS s for the conditions factor and the 
covariate are set out in the Venn diagram (see Chapter 10) of Fig. B.l. 

The gradient of the common regression line is 0.388.
(a) Construct ANOVA summary tables for both the adjusted and unadjust­

ed versions and complete both F-tests for the appropriate directional 
hypothesis.

(b) Obtain the adjusted values of the groups’ means corresponding to an 
IQ of 100.
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residu~l = 274.4 

tot~l = 504 

Fig. B.l 

(c) Obtain the correlation of IQ with the picture recognition score. 
(d) Summarize the results of the experiment and state your view on the 

usefulness of the covariate. 

CHAPTER 8 

B8.1 Sixty family triads (mother, father, child) took part in a study of the 
relationship of family interaction patterns with family adjustment and the 
status of the father (stepfather versus biological). 

The families were randomly sampled from populations defined as fol­
lows: 

(a) biological father and well-adjusted family 
(b) biological father and not well-adjusted family 
(c) stepfather and well-adjusted family 
(d) stepfather and not well-adjusted family 

There were 15 families in each group. 
Measures were obtained on three variables which related to family inter­

action patterns: 

Variable 1: child's positive involvement 
Variable 2: marital relations quality scale 
Variable 3: family agreement 

All scales were constructed so that a higher score corresponds to more 
positive involvement, better marital adjustment or to more family agree­
ment. 

The researchers made certain predictions about the outcome of the 
study, which are as follows: 

(i) Well-adjusted families will have higher scores on the marital relations 
scale than not well-adjusted families. 

(ii) Children in stepfamilies will have a lower positive involvement with 
their father than children in biological families. 

(iii) Children in well-adjusted stepfamilies will have greater positive involve­
ment with their fathers than children in not well-adjusted stepfamilies. 
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(iv) Family agreement will be greater in well-adjusted than in not well- 
adjusted families.

(a) By reference to the cell means in Table B.3 display graphically the 
effects appropriate for each proposition (i) to (iv).

(b) By reference to Table B.4 or otherwise, carry out tests of significance of 
the propositions (i) to (iii), paying particular attention to techniques 
required for directional F-tests and for simple effects.

(c) Explain why the interaction present among the effects for family 
agreement indicates a difficulty in interpretation of the results in res­
pect of proposition (iv). Carry out a test of the largest simple effect 
involving this variable.

Table B.3 Mean scores on three scales for four groups of families

Variable Biological father Step-father

Well-adjusted Not well- 
adjusted

Well-adjusted Not well- 
adjusted

Child’s positive 
involvement with 
father

13.31 7.93 8.44 3.02

Marital relations
scale

114.31 80.67 124.81 102.38

Family agreement
scale

23.50 23.07 29.00 20.87

Table B.4 Mean-squares and F-values from ANOVAs for each of three dependent 
variables

Variable MS for 
error

F for 
family 

adjustment

F for 
status 

of father

F for
interaction

Child’s positive 
involvement with 
father

15.05 29.41 24.09 0.01

Marital relations
scale

281.6 43.52 14.28 1.75

Family agreement
scale

19.45 11.72 3.86 4.42

B8.2 This exercise is based on data from Armitage (1987).
An experiment was carried out to compare the effects of three drug 

treatments and a control condition on the clotting times of blood plasma. 
Eight subjects were tested, each under all four treatments.

The mean clotting times (in minutes) were:

Condition Drug 1 Drug 2 Drug 3 Control
Mean time 9.30 9.71 9.94 11.02
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(a) Express the conditions effects as deviations and hence calculate the SS 
for conditions.

(b) Given that the SS for subjects = 78.99 and SS for interaction = 13.77, 
complete the overall ANOVA table and test of significance of conditions.

(c) Carry out the a priori test of the hypotheses:

H0: conditions do not differ
Hi. drug conditions (considered together) lead to lower clotting times 

than the control condition.

(d) Give your interpretation in simple English of the subjects x conditions 
interaction.

CHAPTER 9

B9.1 Compare the usefulness of the concepts of power and sensitivity to 
the designers of experiments.

B9.2
(a) In a randomized independent groups design with three groups, the 

‘true’ effect of a factor on the values of the dependent variable is (5, 12, 
—17). The result of an experiment designed to evaluate the effect is the 
following set of means:
Gx =  50.92 
G2 = 55.12 
G3 = 25.48
If there are n =  5 subjects per group, the within groups SS is 4101 and 
the significance level for the test is 0.05, calculate the power of the test.

(b) (i) For the experiment in part (a) obtain the sensitivity and the
efficiency. Assume the cost, in terms of subject time, is 0.25 hours 
per subject and, in terms of researcher time, is 0.5 hours per subject 
plus a once-and-for-all 6 hours set-up time.

(ii) Identify the influences on the power of a single factor independent 
groups ANOVA with reference to the example in part (a).

Explain how the power may be improved without losing gener- 
alizability or economy.

B9.3 A pilot study is to be carried out into the effect of certain therapeutic 
activities on mood in an institution-resident elderly population. Individuals 
are to experience one of the following three conditions:

Condition 1: Listen to unfamiliar songs 
Condition 2: Listen to familiar songs 
Condition 3: Sing along to familiar songs

The dependent variable mood is measured on a scale from 0 to 25 using a 
standard interview.

The comparison of conditions 2 and 3, which use the same songs, is to 
investigate the active versus passive aspect.



The comparison of conditions 1 and 2 is to investigate the familiar versus 
unfamiliar aspect. 

The presence or absence of dementia was thought likely to influence 
mood. 

Accordingly, the design of the pilot study was as follows. By random 
selection, three groups of individuals were assembled each consisting of 4 
dementia and 4 non-dementia residents. Each group was assigned to one of 
the conditions thus: 

Condition 

1 l 3 

Dementia 
Non-dementia 

n=4 n=4 n=4 
n=4 n=4 n=4 

The time costs of the pilot study were as follows: 

Running the music sessions 3 @ 2 h 
Mood testing, each individual 24 @ t h 
Dementia testing 24 @ i h 
Fixed set-up costs 

Total 

= 6 hours 
=12 hours 
= 6 hours 
=10 hours 

34 hours 

The results of the two-factor analysis of variance in terms of sums of 
squares (SSs) are displayed on the Venn diagram in Fig. B.2. 

(a) Set out the complete analysis of variance table and report the test of 
significance of conditions. 

(b) One of the main reasons for the pilot study was to explore the use­
fulness of the dementia factor. Apply appropriate methods to compare 
the pilot study as run with a hypothetical alternative version in which 
consideration of dementia is omitted. Comparison of efficiency and 
sensitivity should be among the approaches you adopt. 

r:::\onditions x dementia 

v 
residual = 71 3 

total= 2284 

Fig. B.2 

Appendix B 111971 
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(c) Does a version of the design which ignores dementia and retains 24 
subjects in total have enough power for the test of significance of a 
conditions effect of size ( — 7, 4-4, + 3)?

B9.4 An experiment was set up to compare the levels of anxiety generated 
by three alternative methods of extracting wisdom teeth.

Thirty patients needing extractions were randomly allocated, each to one 
of the methods, so that ten patients were treated by each method.

The Spielberger state anxiety score was obtained 15 minutes after the 
extraction and served as the dependent variable for the analyses of the 
results.

The mean anxiety state scores for the three methods were:

Method Mean

1 33.48
2 32.58
3 33.85

The SS s obtained from an analysis of variance of the state anxiety scores 
were:

Source o f variation SS

Between methods 8.533
Within groups 54.657

Two potentially useful covariates were available, the ages of the patients 
(in years) and trait anxiety scores obtained before the patients were told of 
the need for an extraction.

(a) (i) Obtain the relative efficiencies of the versions of the experiment
with each of the covariates as compared to the basic version of the 
experiment without covariates.

The necessary information about SS s and costs follows. The 
costs, in terms of time spent by the researcher were:

Trait anxiety measurement 20 min)
State anxiety measurement 20 min > per patient
Age in years 5 min J
Set up and analysis time 6 hours (once only)
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The SSs were:

Source of SS adjusted SS adjusted
variation for age for trait

Between methods 8.566 19.98
Within groups 52.757 36.40

(ii) Report and justify your conclusions about the usefulness of the 
covariates.

(b) The model which includes trait anxiety score as covariate has the form:

f -0.089}
state score = 33.303 + < —1.076 >+(0.5424) (trait —31.40)

( +1.165 J

The overall mean state score is 33.303 and the overall mean trait score 
is 31.40.

Interpret the three terms in the model in language that would be 
clear to a dentist. Illustrate your interpretation by using the model to 
calculate the predicted state anxiety score for a fictitious patient.

(c) Carry out and report tests of significance for all adjusted and unadjust­
ed models. Discuss the usefulness of the covariates in view of the results 
of these significance tests.

B9.5 Sixty dysfunctional families took part in an experiment which aimed 
to compare different approaches to family therapy. The families were ran­
domly allocated to four groups of 15.

Each group of families was randomly allocated to one therapy arrange­
ment. Two independent factors were under investigation:

Approach (two levels) behaviour-oriented
feelings-oriented

Location (two levels) the family home
the clinic

The dependent variable was the change (after —before) in family agree­
ment score over the period of the experiment.

The design layout of the experiment displaying the numbers of families 
and mean change scores follows:

Location

family home clinic

Approach behaviour-oriented n =  15 n =  15
23.50 23.07

feelings-oriented n =  15 n =  15
29.00 20.87
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An extraneous variable thought to be useful for increasing the power was 
the total number of years post-15 education of the parents. This variable is 
referred to as education. 

The Venn diagram in Fig. B.3 displays the SSs due to the two experi­
mental independent variables and the covariate. 

residual = 1 0 1 9 
location x approach 

total= 1478 

Fig. B.3 

The cost of the experiment can be assumed made up thus: 

50 hours to set up the experiment 
4 hours for each family. (The time in therapy would have happened anyway 
so was not part of the cost of the experiment.) 
0.25 hours per family to obtain the information for the education variable. 
6 hours additional work involved in the ANCOV A analysis if education 
used, additional to the work of carrying out the ordinary ANOV A if 
education was not used. 

(a) Apply the following three methods for comparing versions of the 
experiment with and without use of the extraneous variable education: 

(i) Rule of thumb assessment of strength of relationship of extraneous 
variable to dependent variable. 

(ii) Comparison of sensitivities of both versions. 
(iii) Comparison of efficiencies. 

Give your assessment as to whether it is worth using the education 
variable. 

(b) (i) Calculate the powers for the tests of significance of each of the 
main effects in the experiment. Take the means in the experiment 
as estimates of the sizes of the effects of the factors, i.e. take the 
deviations to be: 

approach (-0.825, + 0.825) 
location (-2.140, + 2.140) 

(ii) Comment on the adequacy of the power values obtained in (i). 
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(c) Discuss the reasons for the experimenter’s making use of random 
allocation in the above experiment rather than working with families 
that just happened to be in one or other arrangement of therapy.

B9.6 An occupational psychologist carried out an experiment on the effect 
of different organizational arrangements on the profitability of a firm’s 
retail shops. Fifteen of the company’s shops, chosen at random, were 
allocated, at random, each to one of three different organizational arrange­
ments. In addition to the mean profit (in £1000 s) for the three-month 
period of the experiment, a covariate measure was obtained which was the 
number of square feet (in 1000 s sq. ft.) of retail floor of each shop.

The results are set out in Tables B.5 and B.6.

Table B.5 Scores and mean scores of the dependent variable and covariate

Organization 1 Organization 2 Organization 3

Shop
No.

Retail
space

Profit Shop
No.

Retail
space

Profit Shop
No.

Retail
space

Profit

1 26.8 22.2 6 40.7 22.5 11 13.6 34.8
2 38.1 25.2 7 5.2 15.9 12 41.2 39.2
3 44.5 26.8 8 24.4 19.6 13 17.9 33.4
4 25.6 33.3 9 42.6 35.5 14 18.6 38.8
5 12.0 15.7 10 47.2 40.4 15 9.1 20.0

Mean 29.4 24.6 32.0 26.8 20.1 33.2

Table B.6 ANCOVA summary table

Source df SS 4/adj S S adj

Region 2 200.452 2 421.502
Residual 12 859.832 11 426.913

Total 14 1060.284 13 848.415

(a) Given that the regression gradient is 0.421, calculate the mean profits of 
each of the three groups of shops adjusted to what they would be if all 
shops had exactly 27.17 thousand sq. ft. of sales space.

(b) Interpret the results of the experiment so as to reach a decision about 
the relative merits of the three organizational methods and so as to 
clarify the role of the covariate.

(c) If collating together the profit figures for one shop takes on average 
four staff hours, and obtaining the area of sales space takes six staff 
hours, investigate the relative efficiency of the ANCOVA as compared 
to the equivalent simple one-factor ANOVA.

B9.7 An experiment was carried out to study the effects of four drugs on 
reaction time to a series of standardized tasks. All subjects had been given 
extensive training on those tasks prior to the experiment. The 16 subjects
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used in the experiment were a random sample from the appropriate 
population, eight male and eight female. Sex was taken account of in the 
design and analysis, solely as a blocking factor in order to increase the 
power of the test of the drugs treatment factor.

All subjects’ reaction times were measured under the influence of each of 
the four drugs. The order of treatment was randomized for each subject.

The ANOVA summary table was:

Sources within subjects SS Sources between subjects SS

drugs 591.6 sex 54.0
drugs x sex 1544.2 residual (subjects) 680.8
residual (subjects x drugs) 1128.8

(a) Sketch the Venn diagram showing the apportionment of SS appropri­
ate to the analysis.

(b) Set out the ANOVA summary table and corresponding Venn diagram 
that would be expected in an alternative version of the experiment in 
which the blocking factor, sex, was ignored.

(c) Compare the significance of the effect of the drugs factor in the two 
versions of the experiment.

(d) Calculate the sensitivity of the test of drugs for both versions of the 
experiment. Assuming the costs of the two versions of the experiment 
are identical, calculate their relative efficiency.

(e) What sample size would be needed in the unblocked version of the 
experiment to give the same sensitivity as that obtained in the ran­
domized block version?

(f) Identify the implications of carrying out this experiment using only 
female subjects.

CHAPTER 10

B10.1 A survey was carried out on a sample of nursing undergraduates.

(a) Part of the survey involved relating science A level attainment to 
students’ attitudes to their physiology courses. Attitude was measured so 
that a large score indicated a favourable attitude. The attitude scores of 
the individual students grouped according to sex and A level result were:

Sex Science Attitude scores n
A level 
passed

Female Yes 15 18 2
No 13 10 11 14 9 17 15 10 8

Male Yes 15 9 12 12 10 14 10 7
No 11 16 12 3



(i) Obtain the mean attitude scores for the science A level and no 
science A level groups both unadjusted and adjusted for the effect 
of sex. 

(ii) Interpret the result. 

(b) One further item of information available for each of the 20 students 
was percentage of physiology classes attended throughout the 
course. This information is presented on a scatter plot against the 
attitude to physiology score (Fig. B.4) separately for the science and 
no science students. The students who have passed science A level are 
plotted with a dot in a square, the other students with a diamond. 
The mean percentage of classes attended were 58.5% and 61.5% in 
the science and no-science groups respectively. The appropriate paral­
lel regression lines are drawn on the scatter plot. 

(i) Use these lines to estimate the adjusted mean attitude scores in the 
two groups (adjusted, that is, to the value 60% attendance). 

(ii) Evaluate the effect of the adjustment. 

20 

"' 18 .. 
L. c 
<.> 

"' 16 ::::n 
c:n c 
0 14 
Cii m science 
::::n 
.c 12 ... • no science 
.3 .. 10 
"' 3 .... B .... ., 

6 
40 so 60 70 BO 

percent of classes attended 

Fig. B.4 

B10.2 As part of the World Fertility Survey in Fiji it was required to 
compare the mean number of children per woman in rural and urban areas. 
Data for 16 women are set out below, classified by number of years since 
marriage as well as by type of area. The number of children and, in 
brackets, the number of years of schooling, are given for each woman. 

Years since Urban Rural 
marriage 

<5 2(4) 0(6) 1(4) 4(3) 0(4) 
5-9 7(3) 2(5) 5(2) 8(2) 6(2) 
10-14 3(3) 6(3) 0(7) 6(2) 9(2) 4(5) 

Means 3.00(4.11) 5.14(2.86) 

Appendix B ll2o3l 
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(a) Obtain the mean numbers of children to urban and rural women 
adjusted for number of years since marriage (i.e. adjusted to what they 
could be expected to be if the urban and rural groups had the same 
numbers in each category of years since marriage). 

Comment on the effect of the adjustment you have carried out. 
(b) The number of children to each mother was used as the dependent 

variable in an analysis of variance. The total SS and amounts of SS 
explained by years since marriage and area of residence are indicated 
on the Venn diagram in Fig. B.S. 

ru;dual = 66.36 

total= 128.94 

Fig. B.S 

Construct appropriate ANOV A summary tables and complete tests 
of significance for the effect of area of residence both adjusted for and 
not adjusted for the effect of years since marriage. 

(c) A further analysis of variance was carried out to adjust the numbers of 
children for the numbers of years of schooling of the women. It resulted 
in the sums of squares indicated on the Venn diagram in Fig. B.6. 

total= 128.94 

Fig. B.6 

Construct an appropriate summary table for the effect of area on 
numbers of children adjusted for the effect of numbers of years of 
schooling. Complete the test of significance. 

B10.3 For each of the investigations (a) to (f) below: 

(i) Discuss how far the design employed limits the extent to which a causal 
link can be established of the independent to the dependent variable. 
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(ii) Identify a possible confounding variable and state its likely effect and 
the method you would use to adjust for it.

(iii) Suggest design approaches to controlling the effects of the possible 
confounding variable.

(a) It is required to study the effect of mode of presentation of infor­
mation about childbirth on anxiety among first-time mothers. Mothers 
attending three ante-natal clinics will take part in the study. Informa­
tion will be presented to the mothers as follows:

Clinic 1: booklet
Clinic 2: talk by midwife
Clinic 3: booklet and talk by midwife

The dependent variable is the score on an anxiety questionnaire.
(b) A study is to be carried out of the effect of their earliest experiences of 

drinking alcohol on students’ current attitudes to alcohol consumption 
on campus. Enjoyment of the first experience was recalled by the 
students and rated on a scale 0 to 10. This is to be related to current 
attitude (favourable/unfavourable) on a scale from 1 to 7.

(c) A survey is carried out at a local mother and baby clinic in order to 
compare growth rates of babies according to whether or not the 
mothers themselves follow a vegetarian diet. Assume growth rates are 
measured in grams per month.

(d) An occupational psychologist was employed to study methods of 
organizing production in garment factories. Two main methods were 
to be compared:

(i) the whole garment is completed by one worker.
(ii) hemming, elastication and finishing are carried out by different 

workers who specialize.

Twenty factories of the first type and 30 of the second were to be 
compared with regard to the proportion of factories that had increased 
their output over the last 12 months.

(e) A survey was to be carried out among women living in an inner city 
area to relate their ages to their fears about personal safety when going 
out at night. The women’s level of fear was to be measured on a 
continuous scale from 0 to 19.

(f) All 15 health centres in Bloomsbury and Islington Health District were 
included in an investigation of the effect of certain optional facilities on 
customers’ self-reported level of satisfaction with the service received. 
The facilities were:

(i) Presence of nursery with nurse
(ii) Presence of drinks machine in waiting area

(iii) Presence of coin-box telephone

Satisfaction was measured on a continuous scale from 0 to 10.

B10.4 Identify the validity problem of quasi-experiments and explain how 
it is ameliorated.
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CHAPTER 11

B ll .l  A multiple regression analysis was used to investigate the relation­
ship between girls’ interest in sport and their parents’ interest in sport. This 
was part of a wider study into the development of sexual stereotyping. The 
girls were first-born children and aged 14 years. Identical questionnaires 
were used for the parents and daughters and gave a score out of 50. An 
additional measure was the girl’s general athletic ability rated, out of 20, by 
her sports teacher.

Table B.7

Correlations

Y x2
X, 0.607
x2 0.465 0.772
X, 0.793 0.424 0.382

Table B.8

Number of variables 
in model

R-squared Variables in model

1 0.216 x2
1 0.368 X!
1 0.629 * 3

2 0.368 * 1 * 2
2 0.660 * 2 * 3
2 0.718 * 1 * 3

3 0.722 *1 *2 *3

(a) With reference to the correlations in Table B.7 and the complete set of 
multiple R-squareds in Table B.8 analyse the contribution to explain­
ing variation in Y (the daughter’s interest in sport) of (the father’s) 
and X2 (the mother’s interest in sport). Give answers both allowing and 
not allowing for the explanatory contribution of X3 (the girl’s ability at 
sport).

Base your analysis on:

(i) Semi-partial squared correlations
(ii) Partial squared correlations

(b) Interpret the coefficients in Table B.9 in a way that contributes to the 
aims of the research project.

(c) If there were 35 families in the study sample complete the ANOVA 
table in Table B.10 for the full model and carry out the test of signi­
ficance.
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Table B.9

Variable Regression coefficient

X x +0.52
X2 -0.15
X3 +1.72

Table B.10

Source SS

X u X2 and X3 2443
Residual 938

Total 3381

B11.2 An investigation was carried out of the working of a drug used to lower 
blood pressure (BP) during operations. The extent to which BP was 
lowered depended on the way in which the drug was administered. Data was 
obtained in the form of a survey of 53 operations. The variables studied were:

X\ (recovery time): the length of time in minutes for BP to return to 
normal after discontinuation of administration of the drug.

X2 (dose): amount of drug given in milligrams.
X3 (level): the mean level of BP during administration of the drug.

The correlations among these variables were:

___________ *2 *3
X t 0.335 -0.108
X 2 0.469

Considering X x as the dependent variable, a multiple regression was
obtained with an associated multiple R 2 of 0.2018, as follows:

* , = 23.01 +23.64*2-0 .715*3

(a) Using the separate correlations of * , with X 2 and * 3 c*nd the value of 
multiple R 2, construct the Venn diagram for explained variation in * ,. 
Label each region by the proportion it represents.

(b) Using the Venn diagram obtained in (a) or otherwise, obtain the 
correlation of * , with X 2, partialling out the effect of X 3. Comment on 
the effect of the partialling.

(c) Given that the total SS of * , is 13 791, complete the ANOVA summary 
table for the multiple regression of * , on X 2 and X 3 and test the 
significance of this full model.

(d) Discuss the relationships among the three variables in terms likely to 
be used by the researchers who carried out the study. The discussion 
should be based on interpretations of the Venn diagram, the correla­
tions, the regression equation and the significance test.
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B11.3 A multiple regression analysis was carried out as part of a study 
designed to investigate the relationships between cognitive ability at age 
five years (CA5) and four independent variables. The i.v. s were a measure of 
family background, experiences up to age three years and from three to five 
years and verbal ability at three years.

The independent variables can all be regarded as continuous, are labelled 
X t to X 4, and are defined as follows:

X x Socio-economic status of family at birth (1 = professional employment 
group through to 6 = unskilled group).

X2 Number of developmental^ appropriate experiences between ages 1 
and 3 years.

X3 Verbal ability at age 3 years (high score corresponds to high ability 
level).

X4 Number of developmental^ appropriate experiences between ages 3 
and 5 years.

The correlations of the i.v.s with CA5 were 0.37, 0.25, 0.67 and 0.30, res­
pectively.

The proportions of the total SS of the d.v. explained by various combi­
nations of the i.v.s are set out in the following table:

1 0.137
2 0.063
3 0.449
4 0.090

1 2 0.160
1 3 0.456
1 4 0.153
2 3 0.462
2 4 0.110
3 4 0.472

1 2 3 0.476
1 2 4 0.168
1 3 4 0.483
2 3 4 0.459

1 2 3 4 0.490

(a) Identify the order in which variables would be included in the model in 
a stepwise forward procedure.

(b) Which is the best combination of three i.v.s? Display on a Venn 
diagram the proportion of the SS total explained uniquely by each of 
them.

(c) What percentage of the total variation in CA5 was not explainable by 
the model combining all four i.v. s?
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(d) Given that the total SS for CA5 was 591.7 and the analysis was based 
on a sample of 748 children, set out the ANOVA table for the 
model based on X u X 2 and X 3. Report the result of the test of significance.

(e) Generally evaluate the usefulness of measurements made after the third 
year.

CHAPTER 12

B12.1 This exercise is based on data from Hazrati (personal communication).
A study was carried out of visual and phonetic coding in deaf and hearing 

children.
Twenty deaf and twenty hearing children were tested on their recall of 

words and symbols. There were five lists, each of 12 words or symbols as 
follows:

List no. Description Examples

1 Control condition nouns box, shoe, apple
2 Symbols x >
3 Words not amenable to visual code from, you
4 Phonetically similar words true, view
5 Words similar in deaf signing right, ought

All children were shown and then tested on all five lists. The number of 
words or symbols recalled was recorded.

The following propositions were to be examined in the light of the 
results:

(i) Hearing children will perform better than deaf children overall.
(ii) Recall will be better in the control condition than in all other con­

ditions considered together.
(iii) Deaf children will perform better than hearing children in the second 

condition.
(iv) Deaf children will show a different pattern of response to the condi­

tions than the hearing children.

The mean numbers of words recalled in the various combinations of con­
ditions were:

Condition

Control 2 3 4 5

Group hearing 8.3 5.0 6.1 7.6 7.8
deaf 6.8 9.2 6.0 6.5 7.5
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The ANOVA summary table was:

Source SS d f
Condition (C) 64.32 4
Group (G) 2.88 1
G xC 209.12 4
Subjects 24.77 38
Subjects x C 33.29 152

Total 334.38 199

(a) For each of the propositions (i) to (iv) identify the set of means and 
sketch the graphical representation which best informs about it.

(b) By calculating SS s where necessary, complete the tests of significance 
for propositions (iii) and (iv).

(c) Display the various sources of variation on a Venn diagram and hence 
express the size of the variation due to condition as a proportion of the 
appropriate total SS.

B12.2 An experiment aimed to investigate the influence of two modes of 
stimulation (auditory and visual) and two modes of response (manual and 
speech) on the reaction times of schizophrenic and normal subjects. Each 
subject was tested under all four conditions.

The results in terms of mean reaction times (seconds) were as follows:

Mode

Active paranoid 41 41 50 53
Active non-paranoid 64 65 78 70
Withdrawn paranoid 66 62 78 69
Withdrawn non-paranoid 62 59 75 68
Normals 27 32 37 41

(A= auditory, V=visual, M = manual, S = speech)

(a) Display graphically the interaction of group with mode. After examin­
ing the graph consider whether the results could be clarified by any of 
the following:

(i) A contrast or comparison among the levels of group.
(ii) The formation of new factors from among the levels of mode.

Show graphically any main effects or interactions you consider to be 
relevant.
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(b) In the original two-factor analysis, the SS s were:

Source SS Source SS

Mode 6 797 Subjects 62 304
Group 62 347 Subjects x Mode 26 614
Mode x Group 1 563

Given that there were 12 subjects in each group (60 in all), carry out a 
test of significance of the simple effect of mode for the withdrawn 
paranoid group. Test also the simple effect of group for the AM mode.

B12.3 This exercise is based on data from Armitage (1987).
A longitudinal study was carried out of the effect of overcrowding on the 

prevalence of chest infection in children. Measurements were made of the 
number of positive readings of pneumoccus at three ages. (Pneumoccus is 
the preferred indicator of chest infection.)

Families were randomly selected from each of three categories of over­
crowding. There were three families in each category. The first child in each 
family was measured at 1, 2 and 3 years of age. The mean numbers of 
positive readings were:

Age

1 2 3

Conditions overcrowded 9.67 25.00 23.67
crowded 6.33 14.67 12.67
uncrowded 3.00 5.67 12.33

The SS s were:

Source SS

Age (A) 528.2
Conditions (C) 720.9
A x C Interaction 156.9
Subjects 284.4
Subjects x A 286.2

(a) Display the SS s on an appropriate Venn diagram and hence express 
the variation explained by conditions as a percentage of the appropriate 
total.

(b) Complete tests of significance for age, conditions and interaction and 
summarize the effects of these factors in a way that would be directly 
usable by policy-makers.
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(c) Carry out and report the results of the following tests of comparisons:

(i) A priori trend of increasing prevalence of infection with increasing 
age.

(ii) A posteriori comparison of the crowded with the uncrowded con­
ditions.

CHAPTER 13

B13.1 In a study of sensitivity to orthographic structures of deaf and 
hearing subjects, 10 deaf subjects with poor speech, 10 deaf subjects with 
good speech and 10 hearing subjects were tested on their ability to 
recognize a target letter as having been present or not present in non­
words displayed briefly on a screen. The non-words were presented in 
random order having been generated according to the two levels of the 
factor regularity (regular versus irregular) and the two levels of the factor 
Summed Positional Frequency (SPF) (high versus low).

All subjects were tested at both levels of both experimental factors.
The dependent variable was the percentage of correct responses.
The sums of squares are set out in the table below:

Source d f SS

Group 2 754.92
Subjects 27 1912.71
Regularity 1 974.70
Group x regularity 2 140.33
Subjects x regularity 27 1876.91
SPF 1 484.00
Group x SPF 2 3.62
Subjects x SPF 27 3020.39
Regularity x SPF 1 18.40
Group x regularity x SPF 2 15.00
Subjects x regularity x SPF 27 641.14

Total 119 9842.12

(a) Complete the ANOVA summary table and complete all tests of signi­
ficance.

(b) If the mean scores for the three levels of factor group were as follows:

hearing =  76.98 
deaf (good speech) =  74.66 
deaf (poor speech) =  70.90

(i) Carry out a test for trend in the means for factor group.
(ii) Carry out an a posteriori test of this contrast:

(hearing versus combined deaf groups).
(c) Set out a data layout diagram for this design.
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B13.2 An experiment was carried out on the use of the drug diazepam as a 
tranquillizer for administration to dental patients immediately prior to 
their treatment. Thirty-four highly anxious patients and the same number 
of normal patients took part. One of the aims of the research was to study 
the effect of the drug on patients’ motor coordination. This was achieved by 
requiring all the patients to perform three motor coordination tests, I, II 
and III, on four occasions:
(a) immediately before
(b) 60 minutes after
(c) 90 minutes after
(d) one week after administration of the drug.

The scores on the tests are the number of tasks completed in a given 
time. Tables B.11-B.13 set out the mean scores of the two groups of 
patients under the various combinations of conditions. Table B.14 is the 
ANOVA summary table.
(a) For each of the propositions listed as (i) to (iv) below,

(1) Display graphically the means appropriate to the investigation.
(2) Carry out the test of significance. (Hint: select the mean square from 

the ANOVA summary table or, where necessary, calculate the 
appropriate mean square.)

Table B.I1

Test I Test II Test III Means

Normal group 61.575 67.075 75.525 68.058
Anxious group 67.275 61.575 79.925 69.592

Means 64.425 64.325 77.725 68.825

Table B.12

Before
drug

After drug Means

60 min 90 min 1 week

Normal group 
Anxious group

71.333
72.933

54.467
55.600

72.200
73.233

74.233
76.600

68.058
69.592

Means 72.133 55.033 72.717 75.417 68.825

Table B.13

Before
drug

After drug Means

60 min 90 min 1 week

Test I 66.800 52.450 67.150 71.300 64.425
Test II 68.200 50.200 68.200 70.700 64.325
Test III 81.400 62.450 82.800 84.250 77.725

Means 72.133 55.033 72.717 75.417 68.825
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Table B.14

Source of variation Sum of 
squares

df Mean
square

Main effects
Test 32 319.0 2 16 159.5
Group
Occasion

479.0 1 479.0
52 989.0 3 17 663.0

Two-way interactions
Test x group 5 103.0 2 2 551.5
Test x occasion 668.5 6 111.4
Group x occasion 56.5 3 18.8

Three-way interaction
Test x group x occasion 966.0 6 161.0

Error terms
Subjects 12 571.0 66 190.5
Test x subjects 7116.0 132 53.9
Occasion x subjects 3 770.0 198 19.0
Test x occasion x subjects 13 421.0 396 33.9

Total 815

(3) Express the result in language that would be used by the experi­
menter.

(i) The normal group scores differ from the anxious group scores 
overall.

(ii) The difference in scores between the two groups depends on which 
test is used.

(iii) The one week after scores differ from the before drug scores overall.
(iv) The anxious and normal groups scores differ 60 minutes after 

administration of the drug.

(b) Give your views on whether there is a practice effect present and state 
the statistical test of significance that would help you decide. Do not do 
any new calculations.

B13.3 An experiment had as aims the investigation of the effect of unilat­
eral auditory stimulation at various levels of intensity and at various 
frequencies in either the left or right ear on subjects’ adjustment of a rod to 
a position of subjective verticality.

Three intensities were used: 10 dB, 40 dB and 70 dB. Each subject was 
tested under all six combinations of the ear (left, right) and intensity con­
ditions. (For analysis purposes ear and intensity were regarded as a single 
factor with six levels.)

Subjects were randomly allocated to a single level of the frequency con­
dition so that they experienced either 1500 Hz, 1000 Hz or 500 Hz for all six 
measurements. The sex of the subjects was used as a blocking factor, and 
nine male and nine female subjects were used, making six subjects at each 
level of frequency. The dependent variable was the size of the deviation of 
the rod from the true vertical.
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(a) Set out the data layout diagram for this experiment.
(b) Construct an empty ANOVA summary table for this experiment show­

ing the sources of variance, the degrees of freedom and the appropriate 
error terms for the denominators of the F-tests.

(c) What features of the experimental conditions would have led the 
experimenter to choose repeated measures (within-subjects) for one 
experimental factor and independent groups (between-subjects) for the 
other?

(d) What might have been the experimenter’s reasons for including sex as a 
blocking factor?

FURTHER EXERCISES

1. Ten subjects were asked to decide true or false for a random sample of 
numeric additions presented on a screen. Additions were sampled from the 
population consisting of all possible numbers 0 to 9, for example 0 + 2, 
6 + 1, 9 + 9 etc.

Half the sums appeared with the correct answer and half with the 
incorrect answer.

Half the incorrect answers were ‘reasonable’ (in error by +1 or +2), and 
half were ‘unreasonable’ (in error by +5 or +6).

Mean reaction times (in milliseconds) were obtained for each subject for 
choices on the three categories of sums as follows:

Subject True False Subject
individual

meanReasonable Unreasonable

1 866 1307 1225 1133
2 1109 1093 992 1065
3 1128 1202 1321 1217
4 1513 1244 1271 1343
5 859 1101 872 944
6 1086 1231 1328 1215
7 1163 1195 1310 1223
8 919 1096 986 1000
9 1068 1119 1117 1101

10 1072 1201 1209 1161

Means 1078.3 1178.9 1163.1

The SSs were as follows:

Conditions: 58 694
Subjects: 375 792
Conditions x subjects: 231 035
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(a) Complete the test of significance of the effect of conditions on reaction 
time and report the result.

(b) Test an appropriate a priori one degree of freedom contrast. Explain 
why the contrast you have chosen is appropriate. Report the result.

(c) Compare the performances of the fastest and slowest subjects overall 
by plotting their reaction times on a suitable graph. Interpret the graph 
for its implications for the analysis of variance and refer to any impli­
cations it may have for the designer of the experiment.

(d) Suppose it takes 1 hour to obtain a subject and 0.5 hours to take one 
subject through one of the three sets of conditions. Compare the effi­
ciency of this design with that of the between-subjects version in which 
10 subjects are used for each condition.

2. (a) In independent-groups ANOVA, what are the influences on the 
power of the test and on the generalizability of the results?

(b) How is it possible, without increasing the cost of the experiment, in a 
one-factor ANOVA, to improve either the generalizability or the 
power without worsening the other? Explain the issues.
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Solutions to exercises 

for Chapters 4-13 

CHAPTER 4 

4.1 
(a) Predicted score= 7.88 + 1.15 = 9.03 according to model: 

{ 
0.75} Expected score= 7.88 + - 1.9 
1.15 

(b) SSbetween = 10(0.752 + 1.92 + 1.152
) 

= 10(5.495)=54.95 
(c) Means are 8.63, 5.98, 9.03 which leads to Fig. C.l. 

Fig. C.l 
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condition 

4.2 Use an appropriate computer package. 
Decide to reject H0 • 

4.3 
(a) See Fig. C.2. 

(b) size x 100 °·2389 5.2% of total 
total 0.2389 + 4.3403 
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Fig. C.2 

(c) Source df ss MS F 

Between-groups 2 0.2389 0.1195 1.57 
Within-groups 57 4.3403 0.076 

Total 59 

Fe (i.e. F critical) on (2, 57) df is 3.15. Since F observed does not exceed 
3.15 we cannot reject H 0 • Hence we conclude that the treatment 
conditions do not differ in their effects. 

(d) Variance estimate from differences among group means is 
MShetween =0.1195, whereas variance estimate from difference among 
individuals within groups is MSwithin =0.0761. 

If H 0 is true we expect these to be the same. In fact, the between 
groups estimate is 1.57 times the size of the within groups estimate. 
This suggests there is a small effect of treatment conditions, but not 
significant- as seen in (c) above. 

CHAPTER 5 

5.1 
(a) Medication 2 is the more effective (Fig. C.3). 
(b) Subject No. 3 appears to have benefitted least from treatment (Fig. 

C.4). 
(c) Overall mean= 15.45 

Conditions effect=7.15, 7.15, -5.65, -8.65 
Hence SS for conditions= 5(208.99) = 1044.95 

(d) Table 1: conditions+subjects removed 
Table 2: conditions removed 
Table 3: subjects removed 

(e) SS for reliability= [0.42 + ... + (- 2.85)2 ] = 56.30 
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(f) Source ss 

30 

bese 1 bese 2 med 1 med 2 
condition 

··.····,~. 

bese 2 med 1 med 2 

condition 

df MS F 

-- subject 1 

subject 2 
.......... ,........ subject 3 

subject 4 

subject 5 

Conditions 1044.95 3 348.32 74.5 
Subjects 281.70 4 
Reliability 56.30 12 4.68 

F exceeds the critical value. Decide to reject H 0 • 

(g) Use an appropriate computer package. 
(h) Mean square reliability is the required estimate; its value is 

56.30/12 = 4.68. 
(i) No. The virtue of this design is that it bypasses the effect of variation 

between subjects. 

5.2 
(a) See Fig. C.5. There is a consistent pattern as follows: drug 3 gives faster 

reaction time than the other two drugs, and all drugs give faster times 
than the control condition. 

(b) subject1 mean is 27.0. Hence the subject1 conditions effect expressed as 
deviations is: 

[(30-27)(28-27)(16-27)(34-27)]=[3, 1, -11, 7] 
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and for subject 2: 

[ -2, 2, -6, 6] 

subject 1 is most affected: 
subject 2 is least affected: 

condition 

SS=180 
SS= 80 

m subject 1 

subject 2 

(c) Conditions as deviations: [1.5 0.7 -9.3 7.1]. Hence SSconditions = 
5(1.52 + 0. 72 + ... ) = 5(139.64) = 698.2. 

Subjects, expressed as deviations: 

[2.1 -8.9 -1.9 9.1 -0.4] 

Hence SSsubjeets = 4(2.1 2 + · · ·) = 4(170.2) = 680.8. 

(d) Source 
Conditions 
Subjects 
Reliability 

ss 
698.2 
680.8 
112.8 

df 

3 
4 

12 

Compare with critical F with (3, 12) df: 
at 0.05 level= 3.49 
at 0.01 level= 5.95 

MS 

232.73 

.9.4 

Hence reject H 0 : conditions have identical effects 
in favour of H 1 : conditions differ in effects. 

(e) Size of SS for conditions as a proportion of total: 

698.2 
SSwithln = 698.2 + 112.8 0.861 

F 

24.76 

Hence 86% of variation within-subjects is explained by conditions. 
(f) Use an appropriate computer package. 



CHAPTER 6 

6.1 
(a) Best combination is machine 2, method 2. 

Worst combination is machine 3, method 1. 
(b) Overall worst machine is No. 3. 

Overall worst training is No. 4. 
(c) See Fig. 6.2. The simple effect of training for machine 3 shows a 

markedly different pattern from that of the other two simple effects. 
This suggests that there is an interaction. 

(d) Under training method 4 the simple effect of machine is shown in Fig. 
C.6, whereas the main effect shows a different pattern (Fig. C. 7). 
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(e) Main effect of machine: 

15-15=0 
11-15= -4 
19-15= +4 

giving (0, -4, +4). 
Main effect of training: 

Appendix C llu1 I 
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Main effect of training:

15.33-15=0.33
1 2 .67 -15= -2 .33
15.33-15 = 0.33
16.67-15 = 1.67 

giving (0.33, —2.33, 0.33, 1.67).

(f) fl2  13 15 20) f 0]12 13 15 20
9 8 12 15

25 17 19 15

12 13 15 20
13 12 16 19
21 13 15 11

12 13 15 20
13 12 16 19
21 13 15 11

.33 0.33 1.67}

f 11.67 15.33 14.67 18.33)
= <12.67 14.33 15.67 17.33 >

(20.67 15.33 14.67 9.33J

The remaining variation among the cell means is due to interaction 
(or to an apparent interaction due to individual variation).

(g) Use an appropriate computer package.

6.2

(a) Source SS df MS F

Condition 0.048 2 0.024 3.79
Sex 0.096 1 0.096 15.16
Interaction 0.052 2 0.026 4.11
Within (error) 0.342 54 0.00633

Fc(2, 54) at 0.05=3.23 F c(l, 54) at 0.05 = 4.08
0.01 = 5.18 0.01 = 7.31

Hence:

condition is significant at p<  0.05
sex is significant at p<0.01
interaction is significant at p<  0.05

(b) The bar chart showing the effect of factor sex is shown in Fig. C.8.
The bar chart showing the effect of factor condition is shown in 

Fig. C.9.
The interaction of sex with condition is shown in Fig. C.10.

(c) Presence of interaction. Conditions have different effect on females than 
on males.

(d) By inspection of the appropriate means or calculation of sum of 
squared deviations for each simple effect. Sex: that at demonstration 
condition (i.e. condition 3)
Condition: that experienced by females
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(e) Females
Deviations: (—0.01, —0.05, +0.06)

SS =  10(( -  0.01)2+ ( -  0.05)2 + 0.062) =  10(0.0062)
=0.062 

d f= 2 
M S=0.031

f=S5-4-90
This exceeds the 0.05 critical F, hence reject H0.

Males
Deviations: (0.05, —0.03, —0.02)

SS = 10(0.052+ ( —0.03)2+ ( —0.02)2)
=  10(0.0038)
=0.038 

i f  =2
M S=0.019

f=S = 30° °n(2>54)d/
Not significant, hence do not reject H0.

(f) If any of the sex simple effects are not significant it will be the smallest,
i.e. that at the no experience level of condition (i.e. condition 1). 
Means: 0.25, 0.23
Mean of means:

0 25 +  0 23 — 0.24

Deviations: (+0.01, —0.01)

SS =  10(0.012+ ( - 0.01)2)=0.002 
d f = 1 
M S=0.002
F_ 0002 

0.00633 
Not significant.
This answers ^he question but note that the simple effect of sex at 
condition 2 is also not significant.

(g) From (e) the SSs of the simple effects of condition are 0.062 and 0.038 
(total =  0.1).

The SSs of the main effect of condition and interaction are 0.048 and 
0.052. Total=0.1 again!

This is a general rule. The SSs of the simple effects of a factor at the 
various levels of another factor total to the SSs of the factor itself and 
its interaction with the other factor!

(h) Females eat more than males (significant at 0.01 level).
‘Smell’ leads to less food being eaten than the other two conditions 

(significant at 0.05 level).
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Females are more influenced by the conditions than are males; hence 
there is an interaction (p<0.05). (Females eat a larger than expected 
amount in the ‘demo’ condition.)

(i) (i) 0 .2 2 + (-  0.04)+(0.04)+(0.01)=0.15 g
(ii) SS = 10(( -  0.03)2+ ( -  0.01)2 +  -  +  ( -  0.04)2)

=0.052

CHAPTER 7

7.1
(a) Unadjusted summary table:

Source SS df MS F

Methods (between groups) 36.95 2 18.475 12.38
Residual (within groups) 26.86 18 1.492

Total 63.81 2 0

Fc on (2, 18) df =3.55 at 0.05 
= 6 . 0 1  at 0 . 0 1

Hence reject H0.
Adjusted summary table:

Source SSadj 4f  adj M S F

Methods (between groups) 16.94 2 8.47 13.98
Residual (within groups) 10.30 17 0.606

Total 27.24 19

Fc on (2, 17) df=  3.59 at 0.05, and 6 . 1 1  at 0.01. Hence reject H0.

(b) Score=6.24+(-1.33)4-0.743(4 -  2.76)
=  5.831

(c) Without covariate, proportion of SS is:

proport ion= =  57.9%
63.81

With covariate partialled out (i.e. adjusted for in the analysis):

16.94 „ . . .  
proportion= ^ 4 = 6 2 2 /o

Thus the methods factor looks more impressive when the covariate 
adjustment is effected.

(d) Use an appropriate computer package.



226 Appendix C

CHAPTER 8 

8.1
To obtain the M S  for error it is convenient to set out the omnibus ANOVA 
table:

Source df SS MS

Between-groups 4 5 660.5 1415.1
Within-groups 170 110939.0 652.6

Total 174

(a) Choose coefficients —2, —1,0, +1, + 2  for trend.

L = ( —2)(9.2)+ ( - 1)(16.8)+ (0)(24.0)+ ( + 1)(24.5)+ ( + 2)(21.4)
=  32.1

S S - J T y  ,,-3606.4352 + 1  + 1  + 2

Since df is 1, M S  is 3606.435 too.

. 3606.435 ,  __ .
F for trend =  , =5.526

652.6

Since a directional test is required, obtain Fc as the square of the 
appropriate tc (directional). 
tc on 170 d f at the 0.05 level =  1.658.
Hence Fe on (1, 170) d f at 0.05 level (directional)=(1.658)2 = 2.75. 
Decide to reject H 0 at the 0.05 level and conclude that there is a trend 
in the direction specified.

(b) Choose coefficients —4, +1, +1, +1, +1.

L = ( -  4)(9.2)+ ( + 1)(16.8)+ ( + 1)(24.0)+ ( + 1)(24.5)+ ( + 1)(21.4) 
=49.9

(35)(49.9)2 
SS =  . - 2 ,2 . 2 =4357.52(—4) +1 +1 +1 +1

Hence

„ 4357.52 
“6516“ “

Fc on (1, 170) df = 3.92 at 0.05 level 
= 6.85 at 0.01 level

Decide to reject H 0 at the 0.05 level.
Conclude that the five-minute group differs from the mean of all 

other groups.
(c) This is a multi-mean test. Therefore the Scheffe adjusted linear contrast 

is appropriate.
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Choose coefficients: — 3, — 3, +2, +2, +2.

L=61.8

S S = -  <35; f  ■f 2 =4455.8
(—3) + (— 3) + 2 +  2 + 2

6526

The adjusted Fc is (fc— 1)(FC on 4 and 170 df)
Fc=(5 - 1)(2.45) = 9.8 at 0.05 level 

=(5 —1)(3.48)= 13.9 at 0.01 level

Decide not to reject H0. Conclude that a posteriori there is no 
difference between the means of groups with study times of 10 minutes 
or less and tl\e others.

(d) Choose a pair-wise test: Newman-Keuls.
Stage 1: set out all means in order of value:

9.2 16.8 21.4 24.0 24.5
(5) (10) (25) (15) (20)
' . 'two steps apart

Stage 2: the means to be compared are two steps apart. Hence r = 3, 
df =  170.

Stage 3:

__ 21.4-9.2 „ ooc 
(652.6/35)1/2

Stage 4: compare with qc = 3.36 at the 0.05 level. Decide not to reject 
H0. Conclude that there is no difference between the 5-minute and the 
25-minute conditions.

CHAPTER 9

9.1
(a) A: rule of thumb.

Age, when included in the model, has reduced SS by 3 for conditions 
and by 44 for residual. It accounts for 47 out of the total SS of 255. 
Thus age explains

This is less than the criterion 30% and so the decision would be made 
not to make use of age.
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B: Compare sensitivities.

Unadjusted for age Adjusted for age

Source SS df M S Source SS df MS

Conditions 101 3 33.67 Conditions 98 3 32.66
Residual 154 12 12.83 Residual 110 11 10.00

Sensitivity " E B  Sensi,ivit!' -1 S 5 5
=0.312 =0.400

The version which makes use of age as a covariate is more sensitive. 
Hence decide to include age if sensitivity is criterion.

C: Compare efficiencies.

„  . sensitivityEfficiency= ---------- -
cost

Cost without use of age:

Subjects: to find 16 @ 0.5 =  8 hours
to test 16 @ 0.25= 4 hours

Set-up: 4 hours

Total 16 hours

Cost with use of age: as above but +  3 hours =  19 hours 
Hence

efficiency with age =  =0.02105

0.312
efficiency without age =  — = 0.0195

This approach leads to a decision to use age.
(b) The relative sensitivity is 0.40/0.312 =  1.282 times as sensitive. The 

relative efficiency is 0.02105/0.0195 =  1.08 times as efficient. Hence with 
method B, comparing sensitivity gives the strongest support for use of 
age.

9.2 Note: intelligence scores are assumed to be continuous. However, the 
experimenter chose to group or block individuals into higher and lower 
intelligence groups, hence creating a category variable. Also, subjects are 
randomly allocated from each intelligence block to techniques. Hence the 
name ‘Randomized Block Design’.
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Blocked Continuous covariate

Source df SS M S Source d f SS M S

Techniques
Intelligence
Interaction
Residual

2 618 
1 
2

18 4044

309

224.7

Techniquesadj

Residual

2 590 295 

20 1498 74.9

Total 23 Totaladj 22

F= ? ?  =  1.375 224.7
F =

295
— - = 3  94 
74.9

Fc on (2, 18) df =  3.55 at 0.05 
level. Hence do not reject H0.

Fc on (2, 20) d f — 3.49 at 0.05 
level. Hence reject H0.

When intelligence is regarded as a continuous variable, precision is 
improved, leading to a significant finding.

(b) Note how the 24 subjects are distributed:

T , T> t 3
high 4 4 4

IQ
low 4 4 4

Blocked

Sensitivity = 8
224.7

=0.0356

Continuous covariate
g

Sensitivity = —  

=0.1068

The costs are identical in the two versions hence:

, • ^  • , • . . .  0.1068 „ relative efficiency= relative sensitivity= = 3 . 0
0.0356

The use of intelligence as a continuous rather than a blocked category 
variable leads to three times the efficiency.

(c) The only argument in favour of blocking subjects according to intelli­
gence is the easier analysis and availability of interaction from the 
two-factor ANOVA.

9.3
(a) Use the formula for the approximate method:

n = (2)2(1.96)2(variance)/spd2 
=(15.3664)(variance)/spd2
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Here, variance is estimated as 200. This gives: 
n = (15.3664)(200)/202 

= 8 subjects per group approximately 

(b) Step 1: 
The deviations are ( -10, + 10): 

d+d=200 

Step 2:Variance is estimated as 200. 
Step 3: 
Take n to have values: 3, 5, 7, 9, 11, 16, 18. Then the values of ljl, 
table values and power are as follows: 

Group Table 
size (n) df. ljJ value Power 
3 4 1.22 0.93 0.07 
5 8 1.58 0.78 0.22 
7 12 1.87 0.60 0.40 
9 16 2.12 0.47 0.53 

11 20 2.35 0.32 0.68 
16 30 2.83 0.13 0.87 
18 34 3.00 0.07 0.93 

A rough graph for these values is shown in Fig. C.11. The graph 
describes the relationship of sample size (per group) to power. 

.... ., 
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(c) Reading from the graph, 8 or 9 subjects per group gives approximately 
50% power for the O.Ql significance level. 

CHAPTER 10 

10.1 
(a) 2 83 r =

255
=0.325, r=0.570 
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^  r2=  83 23 =0.5171, r = 0.71983 + 23 + 99

verbal is ‘cut’ out of the Venn diagram.
Note that correlation has increased from 0.570.

(C) r2= - 23^ 5Q =0.424, r = 0.651
23 +  50+99

(d)
Unadjusted Adjusted

Source SS df Source SS d f
org 83
Residual 172

1 org 106 
14 Residual 99

1
13

Total 255 15 Total 205 14

F - 1 Z 2 9 - 6-8 F - | § - 1 3 . 97.62

Nonverbal is ‘cut’ out of the Venn diagram.

42r2= .... = 0  294 
42 +  101 ’

r = 0.542

Note that correlation has decreased from 0.570.
The inclusion of verbal amplifies the effect of org, whereas the 

inclusion of nonverbal diminishes the effect of org (on the d.v.).

Unadjusted Adjusted

Source SS d f Source SS d f
org 83 
Residual 172

1 org 42 
14 Residual 101

1
13

Total 255 15 Total 143 14

F -12.29 =  6'8
F = J^ -= 5 .4 1

7.77

1

Male
Adjusted Unadjusted 

Female means means

(f)

(a)

Traditional

Imaging

14.00
n = 8  
8.80 
n = 5

7.83 
n = 6 
6.33 
n=9

10.92

7.57

11.36

7.21
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(b) 

The effect of adjustment has been to reduce the difference between the 
effect of the conditions from 4.15 to 3.35. This is reasonable since males 
return higher scores than females. Males are more frequent under the 
traditional and females under the imaging method. This sex imbalance 
inflates the apparent treatment effect. 

Unadjusted Adjusted 
Source df ss MS F Source df ss MS F 

Method 1 120 120 10.62 Method 1 68 68 10.12 
Residual 26 295 11.3 Residual 25 168 6.72 

Total 27 415 Total 26 236 

The effect of the adjustment has been to reduce MS residual. However, 
since MS for method has also been reduced, F is unchanged. Thus the 
significance is unaffected. 

10.3 

(a) 

Group A 
Group B 

MeanY 

19.4 
32.2 

Mean X 
24.8 
16.4 

Plot these on a graph as shown, using + (Fig. C.12). Read off the 
adjusted mean number of baskets from intersections of fitted lines and 
20-month dotted vertical. Estimated adjusted group means: 

Group A: 10 baskets 
Group B: 40 baskets 
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Fig. C.12 
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(b) See Fig. C.13. Size of effect has been increased from a difference of 12.8 
to a difference of approximately 30.
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(c)

1
Vs'x'*'
W /v

unadjusted

5 0 -

4 0 -
E
s 3 0 -©
8
tr 20-
§
1© 10-

0 - II

VV,V

m

m
A B

adjusted

Unadjusted Adjusted

Source df SS MS F P Source df SS MS F P

Method 1
Residual 8

410
1598

410 2.0 
199

N.S. Method 1
Residual 7

1541
39

1541
5.57

276 <0.001

Total 9 2008 Total 8 1580

10.4

Investigation 1

(a) i.v.: height, continuous, intrinsic 
d.v.: popularity, continuous

(b) Confounding variables:

age, continuous
ability at sport (poor, average, good) category 
parents9 income, continuous

(c) Select children to have similar age, same ability at sport, etc. or use 
adjustment technique.

(d) Not feasible due to i.v. being intrinsic.

Investigation 2

(a) i.v.: saw programme, category, intrinsic 
d.v.: vaccinated child, category
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(b) Confounding variables:

social class (category) higher 
education (yes/no) category 
car owner (yes/no) category

(c) Select mothers according to social class, education etc.
(d) Yes. Sample mothers, randomly allocate to groups to see the video or see a 

normal child care video. After three weeks check which had child vac­
cinated.

Investigation 3

(a) i.v.: type of teaching, category, extrinsic
d.v.: score on English test, continuous

(b) The IQ (continous) or learning ability (poor, average, good) (category) of 
the pupils may have been higher in one class.

(c) Adjustment techniques at the analysis stage.
(d) Not usually feasible to allocate pupils randomly to a group for more than

one day.

Investigation 4

(a) i.v.: type of conviction, category, intrinsic
d.v.: locus of control, continuous

(b) The burglars may be more intelligent, may have different religious
and social class background and differ in age from the violent
criminals.

(c) Select for comparison groups of prisoners matched for all these variables.
(d) Not feasible.

CHAPTER 11

11.1
(a) Final assessment = 70.0 + 0.35 (personality — 49.2) +1.68 (aptitude — 74.6)

Subject
Estimated

final
assessment

Residual (;residual)2

1 65.2 3.8 14.35
2 57.8 0.2 0.04
3 82.9 -1 .9 3.43
4 61.4 -3 .4 11.78
5 82.7 1.3 1.66

31.26
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From the Venn diagram it can be seen that the residual SS is given 
by

SS = 606 
= 31.25

-11.27--351.21 -212.27

Source df SS MS F Significance

Personality 1 362.48 362.48 23.2 *
Aptitude 1 212.27 212.27 13.6 N.S.
Residual 2 31.26 15.63

Total 4 606.00

* Significant at the 0.05 level

Fc at 0.05 level is 18.5 on (1,2) df Decide to reject H0 for personality, to 
not reject H 0 for aptitude (unique).

(4) g ,_ 3 4 ^ + 2 1 1 2 7 _ ft948
606

This means that 94.8% of the total variation is explained by the model.

CHAPTER 12

12.1

(a) Source SS df MS F

Drugs 32.67 1 32.67 4.460
Tasks 465.08 2 232.54 53.61
Drugs x tasks 11.58 2 5.79 1.335
Subjects 43.95 6 7.325
Subjects x tasks 52.05 12 4.338

Total 605.33 23

Fc on (1,6) = 5.99 at 0.05, 13.8 at 0.01 
Fc on (2,12) =  3.89 at 0.05, 6.93 at 0.01 
Conclude:

drugs is not significant 
tasks is significant, p<0.01 
interaction is not significant

(b) The effect of factor tasks is shown in Fig. C.14.
The effect of factor drugs is shown in Fig. C.15.
The interaction of tasks with drugs is shown in Fig. C.16.
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The simple effect is a comparison among the means of the within- 
subjects factor at a particular level of the between-subjects factor. 
Therefore (section 12.5.3),

MSCrror IS A/Ssubjects xtasks =  4.338
So

139 75
F =  4338"= 3 2 *2 1 5 ° n (2’ U)df

Fc is 6.93 at the 0.01 level, so decide to reject H 0. The simple effect is 
significant at the 0.01 level.

(d) Coefficients: —1 +1 0

L=(-l)(29.375) + ( +  1X26.250)= -3.125 

SS= —ffi.1^5)2 _  39 0625

MSe,

1+1
is A /Ssubjects x tasks =  4.338

Fc on (1, 12) df=4.15 at 0.05 
9.33 at 0.01

Decide to reject H 0. Conclude that task 1 differs from task 2.

(e) The small difference of 2.33 seconds between the mean completion 
times for drug A and drug B is not significant. Assume that the drugs 
do not differ in their effects. There is a significant difference between the 
mean times for the three tasks at the 0.01 level. Tasks accounts for 
465.08/528.71 = 88% of the within-subject variation in completion 
times. There is no interaction between Drugs and Tasks. The simple 
effect of Task for drug A is also significant at the 0.01 level.

Task 1 differs from task 2 at the 0.05 level even though they only 
differ in mean completion times by 3.125 seconds.

12.2

Source d f SS M S F Significance
L 3 5.70 1.9 2.097 N.S.
D 7 15.63 2.233 3.306 *
L x D 21 14.53 0.6919 1.336 N.S.
Subjects 5 28.34 5.668
Subjects x L 15 13.59 0.906
Subjects x D 35 23.64 0.6754
Subjects x L x D 105 54.35 0.5176
Total 191
* Significant at the 0.05 level
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Fc (3,15) df at the 0.05 level =3.29 
Fc (7,35) df at the 0.05 level =2.33 
Fc (21,105) d f at the 0.05 level = 1.75

(b) (i) Coefficients: —3, —1, +1, +3

L =  -3(1.27)-1(1.34) +1(1.40)+3(1.72)
= 1.41

co (8x6)L2 48(1.41)2
Sc2 “  20 ~

Hence

F 4771 
<X906

The critical F is found as the square of the appropriate critical t, 
since it is a directional test:

tc (directional) on 15 df =  1.753 at 0.05 level 
=  2.602 at 0.01 level

This gives (1.753)2 =  3.073 as Fc at 0.05 and (2.602)2 =  6.770 as Fc at 
0.01. We decide to reject H0 at the 0.05 level and conclude that there is 
a trend in the specified direction.
(ii) Coefficients: —1, —1, —1, +3

L =  —1(1.27)-1(1.34)-1(1.40) + 3(1.72)
=  1.15

S S . _ M _ _ 5 . 2 9
1 + 1 + 1 + 9

5.29
f  = 0^06 = 5 -839

For a priori, Fc (1,15) df = 4.54 at the 0.05 level and 8.68 at the 0.01 
level. We reject H 0 at the 5% level (a priori),

(c) By selecting on characteristics that influence the dependent variable the 
power is likely to have been increased.

Right-handedness controls for variation in ability due to handedness. 
‘Normal’ eyesight controls for variation in eyesight. Male and age 20-23, 
apart from giving a narrow focus to the study, controls for variation in 
error distance between males and females and across age groups.

12.3
Expected
score for m 'm c  . f —0.84| , f 0.688) , [ + 0.7125 —0.7125) 
a randomly 
selected 
subject

Overall Effect of Effect of Interaction
mean spectacles sex

-  102375 +  j - 0’84!  +  I  0.6881 f+0.7125 -0.71251 
_  i u . z j id +  j + 0 8 4 j  +  j —0.688J (—0.7125 +0.7125 J



Appendix C 239

CHAPTER 13

13.1
(a) The ANOVA summary table is set out below:

Source
Error

SS df M S MS F Significance

B
C
BC
AB
AC
ABC
sB
sC
sBC

A
subjects (s) 354.6

2.13 1 2.13 subj. 0.1682 N.S.
354.6 28 12.66 — —
55.4 1 55.4 sB 5.875 *
4.03 1 4.03 sC 8.550 **
7.75 1 7.75 sBC 30.69 **
0.102 1 0.102 sB 0.011 N.S.
0.833 1 0.833 sC 1.767 N.S.
0.169 1 0.169 sBC 0.669 N.S.

264.0 28 9.43 — —
13.2 28 0.4714 — —
7.07 28 0.2525 — —

Total 709.2 119_____________________________________

Fc on (1,28) d f  is 4.20 at the 0.05 level and 7.64 at the 0.01 level. 
Significance is shown as * for the 0.05 level and as ** for the 0.01 level 
in the ANOVA summary table.

(b) The speed of movement has a significant effect on the number of 
corrections in eye movement (d.v.). The mean number of corrections for 
the fast condition is 4.0125 compared to 2.654 for the slow movement.

The direction of travel has a significant effect on the number of cor­
rections. The mean for L to R is 3.15 corrections compared to 3.517 for R to L.

The interaction of speed of movement with direction of travel has a 
significant effect on the number of corrections. Fast leads to a mean 
0.85 more corrections than slow in the L to R  condition, whereas fast 
leads to a mean 1.867 more corrections in the R to L  condition.

The dyslexic do not differ in number of corrections from the normal 
subjects.

No other interactions are significant.
(c) See Fig. C.17.

R to L

O
4

0
Fig. C.17 fast slow

speed
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13.2 
(i) (a) See Fig. C.18. 

"0 

~ 
0 
u .. 
L. 

0 
c 
c ., .. 
E 

10 

6 

6 

4 

2-

0 

~ 
' ' ' ... ' ' ' ' ' ' ' ... ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '/'~',' 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ... ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 
2 3 

condition 
Fig. C.18 

(b) SS is 70.8. 
Conditions is a between-subjects factor. The total SS between­

subjects is 276.9. 
Conditions explains 70.8/276.9 = 25.6%. 

(c) MSerror is subjects. 
F = 3.68; F c at the 0.05 level= 3.55, so we reject H 0 and conclude 
that conditions has a significant effect. 

(ii) (a) See Fig. C.l9. 

9 

"tl 8 
.!! .. 
" e -0 7 

" -" "' "' 6 E 

5 
male female 

sex 

Fig. C.19 

(b) SS=25.5. 
The total SS within-subjects is 89.4. 
Occasion x Sex interaction explains 28.5%. 

(c) MSerror is subjects x occasion. 

F = ~~9~ = 13.08 

Fc=4.41 at the 0.05 level 
= 8.29 at the 0.01 level 

hour 

week 



Reject H0 at the 0.01 level. Males and females differ in rate of loss 
of recall. 

(iii) (a) See Fig. C.20. 

Fig. C.20 

(b) 

8 condition 1 

7 

6 - hour 

5 - week 

4 

3 
male female 

sex 

Hour Week 

Males 3.50 7.00 5.250 
Means observed: 

Females 6.75 4.50 5.625 

5.125 5.750 5.4375 

Means expected: 
{ 4.9375 -4.9375} 

-4.9375 4.9375 

rl.4375 +1.4375} 

+ 1.4375 -1.4375 
Mean deviations: 

ss =4(( -1.4375)2 + 1.43752 + 1.43752 +( -1.4375)2) 

=33.062 

As a percentage of total SSwithin this explains 36.95%. 

Appendix C JJ241 J 
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(iv) Simple effect (first-order). 
(a) See Fig. C.21. 

Fig. C.21 

'0 ., 
c; 
u ., .._ 
ci 
c: 
c: 

" ., 
E 

10 

hour week 

occasion 

(b) Means: (9.25, 7.5); mean of means= 8.375. 
Deviations: (0.875, -0.875) 

ss = 8(0.8752 +( -o.87W) 
= 12.25 

Expressed as percentage of total SSwithin = 13.69%. 



Appendix D: 
Approximate degrees 
of freedom for test of 
significance for simple 

effects in BW and 
WW designs

D.l FORMULA FOR DEGREES OF FREEDOM FOR 
POOLED ERROR FOR BW SIMPLE EFFECTS

,, (ffsubjXffsubjxwXfl+l)2
p°°led df subj +  (02)(df subj X w)

where

SS,
0= ■̂subj

S^subj x W

In the BW example from section 12.2, 0 = 1166/113 =  10.319. 

_  (27)(27)(10.319 +1)2 _  93399.30
d jpooled- 27+(10.319)2(27) "  2902.01 “

D.2 FORMULA FOR DEGREES OF FREEDOM FOR 
POOLED ERROR FOR WW SIMPLE EFFECTS

JT   'aJpooled ~  ' Af (Ĉ 2t
(4/sub j x W l)(4/sub j x W1 x W2)(f l +  l ) 2

4/sub j x W1 +  ( W s u b j  X W1 X W2)

where

SSn0 = Jsubj x W1 

S S Subj x W1 x W2



Appendix £: 
Rationale for approximate 
sample size formula

Consider two conditions whose means differ by 21. The equivalent devi­
ations from their common overall mean are (—t, +t). Power as calculated 
in section 9.4.3 is estimated as follows:

/  w ( t ? + t j + t j + - )  y /2 
\  (fc)(variance) J

Substitute k = 2, t1= t2 =t, where spd = 2r, and n=(2)2(1.96)2 (variance)/ 
spd2 to get 0  =  1.96.

Reference to the table of non-central F in Appendix F shows that, for 
two groups, if the significance level is 0.05 the power values are as follows:

n 5 6 7 9 11 16 inf
d fe 8 10 12 16 20 30 inf
Power 0.68 0.70 0.72 0.74 0.75 0.76 0.79

These values suppose a non-directional test. The power would be greater 
for a directional test.



Appendix F: 
Tables of critical values
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Table F.l Student’s t distribution

Probability a

non-directional 0.60 0.50 0.40 0.25 0.20 0.10 0.05 0.02 0.01
directional 0.30 0.25 0.20 0.125 0.10 0.05 0.025 0.01 0.005

df

1 0.73 1.00 1.38 2.41 3.08 6.31 12.71 31.82 63.66
2 0.62 0.81 1.06 1.60 1.89 2.92 4.30 6.96 9.92
3 0.58 0.79 0.98 1.42 1.64 2.35 3.18 4.54 5.84
4 0.57 0.77 0.94 1.34 1.53 2.13 2.78 3.75 4.60
5 0.56 0.75 0.92 1.30 1.48 2.02 2.57 3.36 4.03
6 0.55 0.74 0.91 1.27 1.44 1.94 2.45 3.14 3.71
7 0.55 0.73 0.90 1.25 1.42 1.89 2.36 3.00 3.50
8 0.55 0.72 0.89 1.24 1.40 1.86 2.31 2.90 3.36
9 0.54 0.71 0.88 1.23 1.38 1.83 2.26 2.82 3.25

10 0.54 0.70 0.88 1.22 1.37 1.81 2.23 2.76 3.17
11 0.54 0.70 0.88 1.21 1.36 1.80 2.20 2.72 3.11
12 0.54 0.69 0.87 1.21 1.36 1.78 2.18 2.68 3.05
13 0.54 0.69 0.87 1.21 1.35 1.77 2.16 2.65 3.01
14 0.54 0.69 0.87 1.20 1.34 1.76 2.14 2.62 2.98
15 0.54 0.69 0.87 1.20 1.34 1.75 2.13 2.60 2.95
16 0.54 0.69 0.86 1.20 1.34 1.75 2.12 2.58 2.92
17 0.53 0.69 0.86 1.19 1.33 1.74 2.11 2.57 2.90
18 0.53 0.69 0.86 1.19 1.33 1.73 2.10 2.55 2.88
19 0.53 0.69 0.86 1.19 1.33 1.73 2.09 2.54 2.86
20 0.53 0.69 0.86 1.18 1.32 1.72 2.09 2.53 2.85
21 0.53 0.69 0.86 1.18 1.32 1.72 2.08 2.52 2.83
22 0.53 0.69 0.86 1.18 1.32 1.72 2.07 2.51 2.82
23 0.53 0.68 0.86 1.18 1.32 1.71 2.07 2.50 2.81
24 0.53 0.68 0.86 1.18 1.32 1.71 2.06 2.49 2.80
25 0.53 0.68 0.86 1.18 1.32 1.71 2.06 2.49 2.79
26 0.53 0.68 0.86 1.18 1.32 1.71 2.06 2.48 2.78
27 0.53 0.68 0.86 1.18 1.31 1.70 2.05 2.47 2.77
28 0.53 0.68 0.86 1.17 1.31 1.70 2.05 2.47 2.76
29 0.53 0.68 0.85 1.17 1.31 1.70 2.05 2.46 2.76
30 0.53 0.68 0.85 1.17 1.31 1.70 2.04 2.46 2.75
40 0.53 0.68 0.85 1.17 1.30 1.68 2.02 2.42 2.70
50 0.53 0.67 0.85 1.16 1.30 1.68 2.01 2.40 2.68
60 0.53 0.67 0.85 1.16 1.30 1.67 2.00 2.39 2.66
80 0.53 0.67 0.85 1.16 1.29 1.66 1.99 2.37 2.64

100 0.53 0.67 0.84 1.16 1.29 1.66 1.98 2.36 2.63
200 0.52 0.67 0.84 1.15 1.29 1.65 1.97 2.35 2.60
300 0.52 0.67 0.84 1.15 1.28 1.65 1.96 2.33 2.59

00 0.52 0.67 0.84 1.15 1.28 1.64 1.96 2.33 2.58
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Table F.3 Non-central F distribution

Power —1 —(tabled entry)

d f2 a 0.50 1.0 1.2 1.4 1.6
<l>
1.8 2.0 2.2 2.6 3.0 4.0

d fi  = \

2 0.05
0.01

0.93
0.01

0.86
0.97

0.83
0.96

0.78
0.95

0.74
0.94

0.69
0.93

0.64
0.91

0.59
0.90

0.49
0.87

0.40
0.83

0.20
0.72

4 0.05
0.01

0.91
0.98

0.80
0.95

0.74
0.94

0.67
0.92

0.59
0.89

0.51
0.86

0.43
0.82

0.35
0.78

0.22
0.67

0.12
0.56

0.02
0.23

6 0.05
0.01

0.91
0.98

0.78
0.93

0.70
0.90

0.62
0.86

0.52
0.81

0.43
0.75

0.34
0.69

0.26
0.61

0.14
0.46

0.06
0.31

0.00
0.08

8 0.05
0.01

0.90
0.98

0.76
0.92

0.68
0.89

0.59
0.84

0.49
0.78

0.39
0.70

0.30
0.62

0.22
0.54

0.11
0.37

0.04
0.22

0.00
0.03

10 0.05
0.01

0.90
0.98

0.75
0.92

0.66
0.87

0.57
0.82

0.47
0.75

0.37
0.67

0.28
0.58

0.20
0.49

0.09
0.31

0.03
0.17

0.00
0.02

12 0.05
0.01

0.90
0.97

0.74
0.91

0.65
0.87

0.56
0.81

0.45
0.73

0.35
0.65

0.26
0.55

0.19
0.46

0.08
0.28

0.03
0.14

0.00
0.00

16 0.05
0.01

0.90
0.97

0.74
0.90

0.64
0.85

0.54
0.79

0.43
0.71

0.33
0.61

0.24
0.52

0.17
0.42

0.07
0.24

0.02
0.11

0.00
0.00

20 0.05
0.01

0.90
0.97

0.73
0.90

0.63
0.85

0.53
0.78

0.42
0.69

0.32
0.59

0.23
0.49

0.16
0.39

0.06
0.21

0.02
0.10

0.00
0.00

30 0.05
0.01

0.89
0.97

0.72
0.89

0.62
0.83

0.52
0.76

0.40
0.67

0.31
0.57

0.22
0.46

0.15
0.36

0.06
0.19

0.02
0.08

0.00
0.00

00 0.05
0.01

0.89
0.97

0.71
0.88

0.70
0.81

0.49
0.72

0.38
0.62

0.28
0.51

0.19
0.40

0.12
0.30

0.04
0.14

0.01
0.05

0.00
0.00

d f  2 a d f  i= 2

2 0.05
0.01

0.93
0.99

0.88
0.98

0.85
0.97

0.82
0.96

0.78
0.95

0.75
0.94

0.70
0.93

0.66
0.92

0.57
0.89

0.48
0.86

0.29
0.78

4 0.05
0.01

0.92
0.98

0.82
0.96

0.77
0.94

0.70
0.92

0.62
0.89

0.54
0.85

0.46
0.81

0.38
0.76

0.24
0.66

0.14
0.54

0.02
0.27

6 0.05
0.01

0.91
0.98

0.79
0.94

0.71
0.91

0.63
0.87

0.53
0.82

0.43
0.76

0.34
0.70

0.26
0.62

0.13
0.46

0.05
0.31

0.00
0.07

8 0.05
0.01

0.91
0.98

0.77
0.93

0.68
0.89

0.58
0.84

0.48
0.78

0.37
0.70

0.28
0.61

0.20
0.52

0.08
0.34

0.03
0.19

0.00
0.02

10 0.05
0.01

0.91
0.98

0.75
0.92

0.66
0.88

0.55
0.82

0.44
0.74

0.34
0.65

0.24
0.55

0.16
0.45

0.06
0.26

0.02
0.13

0.00
0.01

12 0.05
0.01

0.90
0.98

0.74
0.91

0.64
0.86

0.53
0.80

0.42
0.71

0.31
0.61

0.22
0.51

0.14
0.40

0.05
0.22

0.01
0.09

0.00
0.00

16 0.05
0.01

0.90
0.97

0.73
0.90

0.62
0.84

0.51
0.77

0.39
0.67

0.28
0.57

0.19
0.45

0.12
0.34

0.04
0.16

0.01
0.06

0.00
0.00

20 0.05
0.01

0.90
0.97

0.72
0.90

0.61
0.83

0.49
0.75

0.37
0.65

0.26
0.53

0.17
0.42

0.11
0.31

0.03
0.14

0.01
0.04

0.00
0.00

30 0.05
0.01

0.90
0.97

0.71
0.88

0.59
0.82

0.47
0.72

0.35
0.61

0.24
0.49

0.15
0.37

0.09
0.26

0.02
0.10

0.00
0.03

0.00
0.00

00 0.05
0.01

0.89
0.97

0.68
0.86

0.56
0.77

0.43
0.66

0.30
0.53

0.20
0.40

0.12
0.28

0.06
0.18

0.01
0.05

0.00
0.01

0.00
0.00

d f  i = degrees of freedom between groups 
d f  2 = degrees of freedom within groups



Table F.3 Non-central F distribution contd

Power = 1 — (tabled entry)

d f  2 a 0.50 1.0 1.2 1.4 1.6
0
1.8 2.0 2.2 2.6 3.0 4.0

d f t  = 3

2 0.05
0.01

0.93
0.99

0.89
0.98

0.86
0.97

0.83
0.96

0.80
0.96

0.76
0.95

0.73
0.94

0.69
0.93

0.60
0.90

0.52
0.88

0.32
0.80

4 0.05
0.01

0.92
0.98

0.83
0.96

0.77
0.94

0.71
0.92

0.63
0.89

0.55
0.86

0.47
0.82

0.39
0.77

0.25
0.67

0.14
0.55

0.02
0.28

6 0.05
0.01

0.91
0.98

0.79
0.94

0.71
0.91

0.62
0.87

0.52
0.82

0.42
0.76

0.33
0.69

0.24
0.61

0.11
0.44

0.04
0.29

0.00
0.06

8 0.05
0.01

0.91
0.98

0.76
0.93

0.67
0.89

0.57
0.84

0.46
0.77

0.35
0.68

0.25
0.59

0.17
0.49

0.06
0.30

0.02
0.16

0.00
0.01

10 0.05
0.01

0.91
0.98

0.75
0.92

0.65
0.87

0.53
0.80

0.41
0.72

0.30
0.62

0.21
0.52

0.13
0.41

0.04
0.22

0.01
0.09

0.00
0.00

12 0.05
0.01

0.90
0.98

0.73
0.91

0.62
0.85

0.51
0.78

0.38
0.69

0.27
0.58

0.18
0.46

0.11
0.35

0.03
0.17

0.01
0.06

0.00
0.00

16 0.05
0.01

0.90
0.97

0.71
0.90

0.60
0.83

0.47
0.74

0.34
0.64

0.23
0.51

0.14
0.39

0.08
0.28

0.02
0.11

0.00
0.03

0.00
0.00

20 0.05
0.01

0.90
0.97

0.70
0.89

0.58
0.82

0.45
0.72

0.32
0.60

0.21
0.47

0.13
0.35

0.07
0.24

0.01
0.08

0.00
0.02

0.00
0.00

30 0.05
0.01

0.89
0.97

0.68
0.87

0.55
0.79

0.42
0.68

0.29
0.55

0.18
0.42

0.10
0.29

0.05
0.18

0.01
0.05

0.00
0.01

0.00
0.00

00 0.05
0.01

0.88
0.97

0.64
0.84

0.50
0.73

0.36
0.59

0.23
0.44

0.13
0.30

0.07
0.18

0.03
0.10

0.00
0.02

0.00
0.00

0.00
0.00

d f 2 a d f

2 0.05
0.01

0.94
0.99

0.89
0.98

0.87
0.97

0.84
0.97

0.81
0.96

0.77
0.95

0.74
0.94

0.70
0.93

0.62
0.91

0.54
0.88

0.34
0.81

4 0.05
0.01

0.92
0.98

0.83
0.96

0.78
0.94

0.71
0.92

0.64
0.89

0.55
0.86

0.47
0.82

0.39
0.78

0.25
0.67

0.14
0.56

0.02
0.28

6 0.05
0.01

0.92
0.98

0.79
0.94

0.71
0.91

0.62
0.87

0.52
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Measurement error 24 
in relation to power 90 

Model
for analysis of covariance 73 
general linear 132 
for independent groups 

design 34 
for multiple regression 136, 

137
in alternative form 133
full 140
in hierarchical sequence 

139
parsimony in 139

selection of 139 
sequential building of 139, 

141
stepwise building of 139, 

141
for repeated-measures design 

46
terms of, for multiple 

regression 133 
for three-factor BBB design 

166
for two-factor BB design 65 
see also Additive model 

Multi-mean comparison or 
contrast 77 

Multiple correlation 
in stepwise model building 

141
Multiple correlation squared

139
Multiple R-squared, see

Multiple correlation 
Multiple regression 

analysis of variance for 133 
applied to confounding 121 
applied to survey data 133 
best model for 139 
coefficients in 133, 138 
compared to other designs 

130
compared with factorial 

design 131 
degrees of freedom for 133,

140
equation for 138 
forward stepwise procedure

141
full model for 140 
goodness of fit in 138 
independent variables in 138 
introduction to 130 
model for 133, 136 
models in hierarchical 

sequence 139 
numerical example of 133 
overview of 131 
parsimonious models for 139 
/^-squared in 138 
residual in 138 
residual variance in 138 
scale for coefficient 138
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semi-partial correlation in 
138

sequential inclusion for 138 
sequential model building 

for 139, 141 
significance test for 140 
size of effect in 134 
stepwise inclusion for 138 
stepwise model building for 

139, 141 
summary table for 140 
terms in model for 133 
unique sum of squares in 

138
Venn diagram for 136

Newman-Keuls test 81 
Non-orthogonal design 102, 

131
Normal distribution 35, 46, 65 
Null hypothesis 21 
Number of subjects 

choice of 89

Observational research 102 
Orthogonal SS 

in two-factor unbalanced 
design 110 

Overall mean 
definition of 51

p-value 21, 22, 23 
Pair-wise comparison or 

contrast 77 
Parsimony 

in model building 139 
Partial correlation 136 

applied to confounding 122 
definition of 138 
formula for 122 

Partialling out 72, 107 
applied to confounding 

variable 118 
as solution to confounding 

115
Pilot study 

for covariate decision 86 
full, for sample size 

estimation 88 
simple, for sample size 

estimation 87

Placebo 162 
Pooled estimates 27 
Pooled mean square error 155 
Pooling 

variance estimates 27 
Population 

heterogeneous 23 
homogeneous 13 

Post hoc test of comparison 80 
Power 13, 23, 89 

definition of 24 
exact determination of 91 
graph for 93 
introduction to 5 
in two-factor design 14 

Practice effect 95 
Pre-existing groups 101

Quasi experiment 101, 110 
confounding in 115

R-squared 138, 139 
see also Multiple correlation 

squared 
Random allocation 7, 19, 101 
Random sampling 19 
Random selection 7 
Randomization 19 
Randomized block design 12,

13
Randomized design 

compared with non- 
randomized 113 

Real phenomenon 8 
Regression 14 

as adjustment technique 69 
to the mean 95 
multiple 130 

Regression coefficients 133, 138 
Regression equation 138 
Relationship 

linear 15 
of scale 138 

Relative efficiency 25, 86, 89 
Relative sensitivity 86 
Reliability variance 

alternative estimates of 41 
between-conditions estimate 

43
in BW and WW designs 152 
definition of 40

within-subjects estimate 42 
Repeated-measures design 

choice of 93 
introduction to 8 
single factor 38 
use of 9
variance sources in 38 

Research 
experimental 4, 101 
observational 102 
survey 102 

Residual 138 
Residual variance 

in multiple regression 138 
Resources 25 
Row mean 51 
Rule-of-thumb 

for inclusion of covariate 86

Sample size 5 
approximate determination 

90
approximate formula for 90 
choice of 89
exact determination of 91 r 
graph for 93
and population variance 90 

Sampling error 21, 25 
Sampling fluctuation 5, 8, 9, 

14, 21, 22, 23, 28
Scale 

continuous 3 
relationship of 138 

Scheffe corrected F-test 81 
Semi-partial correlation 135 

definition of 138 
Sensitivity 13 

definition of 24 
gain from a Category 

covariate 86, 88 
gain from a continuous 

covariate 84 
introduction to 5 
relative 86
in two-factor design 14 

Sequential inclusion 
of independent variables 138 

Sequential model building 
in multiple regression 139, 

141
Sequential sum of squares 105
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Significance 
level of 21 
statistical 21 

Significance test 
in multiple regression 140 

Simple effect 11, 53 
for BW and WW designs 

153
calculation proforma for 156 
example of 52 
first order 170 
MSerror 

in BB design 155 
in BW design 155 
in WW design 156 

second order 170 
summary for BB, BW and 

WW designs 156 
in three-factor design 168 

Simple interaction effect 168 
Single-factor design 

adjusted for category 
covariate 119 

adjustment in 116 
with covariate 14, 68 
independent groups 6, 26 
repeated measures 8, 38 

Single-factor experiments 
combining 14 

Size of effect 33 
for multiple regression 134 
for two-factor BB design 61 
for two-factor BW design 

148
for two-factor WW design 

151
for within-subjects factor 45 

Smallest practical difference 90 
spd, see Smallest practical 

difference
SS

adjusted 70, 107 
between-groups 30 
computation formulae for 

33, 45, 62 
for contrasts and 

comparisons 78 
for correlation (adjusted) 123 
decomposition of 31, 44 
decomposition of, in BB 

design 60 
definition of 17 
definitional formula for 55

orthogonal, in two-factor 
unbalanced design 110 

sequential 105 
in single-factor design 

(adjusted) 119, 120 
synergic 107 
total 31 
Type I 105 
Type II 120 
Type III 105 
unique 105, 107 
weight for 55 
with confounding variable 

adjusted out 118 
within-groups 30 
see also Sum of squares 

Statistical inference 
introduction to 4 

Statistical significance 21 
Stepwise inclusion 

of independent variables 138 
Stepwise model building 

forward 141
in multiple regression 139,

141
R-squared in 141 
stopping rule for 141 

Stopping rule 
for stepwise model building 

141
Straight-line relationship 15 
Studentized range statistic q 82 
Sub-population 19 
Subjects 7
Subjects variance 40 
Subjects-by-conditions 

interaction 44 
Sum of squared deviations 17 
Sum of squares 17 

adjusted 107 
sequential 105 
synergic 107 
unique 107
uniquely explained 138 
see also SS 

Summary table 
adjustment of 109 
for analysis of covariance 71, 

116
for BB, BW and WW 

designs 151 
for correlation with category 

covariate 125 
in independent groups design 

31
for multiple regression 140

in repeated-measures design 
44

for three-factor BBB design 
167

for three-factor BBW design 
172

for three-factor BWW design 
174

for two-factor design 60, 61 
Survey 

analysed by multiple 
regression 131 

confounding in 115 
Survey research 102 
Synergic relationship 119 
Synergic sum of squares 107 
Synergy 107, 120

Test of significance 
in independent groups 

design 32 
in repeated-measures 44 

Theory 5
Three-factor design,

BBB 161 
example of 162 
F-test for 167 
model for 166 
simple effect in 168 
simple interaction in 168 
summary table for 167 
three-way interaction in 

165, 168 
BBW 161 

example of 170 
F-test for 172 
summary table for 172 

BWW 161 
contrast in 182 
example of 172 
F-test for 174 
summary table for 174 

contrasts and comparisons 
in 182 

introduction to 161 
WWW 161 

Three-factor design summary 
choice of MSerror 183 
interaction 177-9 
main effect 174-6 
rules for analysis 174 
simple effect 176-7 
simple interaction 180-82 

Three-factor interaction, see 
Three-way interaction 

Three-way interaction 165
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interpretation of 168 
means table for 174 

Trend 
coefficients for 78 

Trend across conditions 77 
Two-factor between-within 

design 
example of 145 
F-test for 147 
model for 146 
size of effect in 148 
summary table for 147 
Venn diagram for 148 

Two-factor design 
analysis for BB, BW and 

WW 151 
comparisons for BW and 

WW 157 
contrasts for BW and WW 

157
df for BB, BW and WW 152 
example of 10
F-test for BB, BW and WW 

153
interaction variance 57 
introduction to 10 
main effect variance 55 
MSerror for BB, BW and 

WW 155 
pooled MSerror for BW and 

WW 154 
reasons for using 14 
simple effect calculation 156 
simple effect for BW and 

WW 153 
simple effect in BB, BW and 

WW 156 
simple effect variance 56 
summary table 60 
unbalanced 102 

Two-factor independent groups 
design 50 

Two-factor unbalanced design 
confounding in 110

example of 110 
marginal means of 104 
orthogonal SS in 110 
significance test for 112 
summary table 109 
test of significance 108 
unweighted means 104 
weighted means 104 

Two-factor within-within 
design 

example of 149 
F-test for 149 
size of effect in 151 
summary table for 149 
Venn diagram for 150 

Type I error 23 
Type I sum of squares 105 
Type II error 23 

in relation to power 90 
Type III sum of squares 105

Unbalanced design 102 
overview of 131 
with covariate, overview of 

131
Unique contribution 138 
Unique sum of squares 105, 

107, 133 
in multiple regression 138 

Unweighted mean 104, 111

Validity 
affected by confounding 115 
assumptions for 35, 46 
of test of significance 35, 46 

Variable 
category type 14 
concomitant 14 

Variance 
definition of 17 
estimation of 17 
of means 18, 27

in relation to sample size 90 
Variance estimate 28, 32 

adjusted 70 
Variance of population means 

estimate of 33 
Variance ratio 41 
Variation 

uniquely explained 138 
Variation between-subjects 60 
Vector of deviations 59 
Venn diagram 

for between-within design 
148

for correlation (with 
covariate) 123 

definition of 105 
interdependence in 136 
for multiple regression 136 
with overlapping regions 112 
for single-factor design with 

covariate 118 
for single-factor with

category covariate 120 
for within-within design 150

Weight 55, 58 
Weight for SS 55 
Weighted means 104 
Within-groups variance 

calculation of 31 
symbolic formula for 30 

IVithin-subjects comparison 8 
Within-subjects design 38 

choice of 93 
efficiency of 94 
threats to validity 94 
when not to use 94 
when to use 95 

Within-within-within design, 
see Three-factor design 

WW design, see Two-factor 
within-within design 

WW two-factor design 149 
WWW, see Three-factor design
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